簡易檢索 / 詳目顯示

研究生: 陳妤瑄
Yu-Hsuan Chen
論文名稱: 高效率流變性電解液於量子點敏化太陽能電池之應用
Application of highly efficient thixotropic polysulfide electrolyte in QDSSCs
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 林正嵐
江佳穎
張家耀
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 量子點敏化太陽能電池電解液膠態流變性二氧化鈦
外文關鍵詞: QDSSC, gel electrolyte, quantum dots, thixotropic, TiO2
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點敏化太陽能電池使用液態電解液常有揮發、洩漏的問題,大多數文獻使用膠態電解液替換。但普遍使用高分子添加所製備的膠態電解液有離子導電度下降,不利於電子傳遞的問題。
    本實驗運用黃原膠的流變特性添加入電解液中製備成膠態電解液克服洩漏之問題,並加入二氧化鈦奈米粒子改善電子傳遞及提升溶液離子導電度以提升電池元件的光電轉換效率。
    製備成膠態電解液有效抑制電子電洞再結合,改善電池元件間的介面阻抗,而添加二氧化鈦奈米粒子可調整光電極費米能階使開路電壓上升,以最佳化膠態電解液添加3wt%二氧化鈦有最佳效率,於CIS系統效率從6.48 ± 0.15% 提升至7.06± 0.06%,CISe系統可由6.79 ± 0.10% 提升至8.00 ± 0.21%,大幅改善光電轉換效率,及此電解液可廣泛應用於Ⅰ-Ⅲ-Ⅵ族量子點敏化電池中。


    Despite to the higher power conversion efficiencies of quantum dot sensitized solar cells (QDSSCs), photovoltaic devices that employ liquid electrolytes suffer from problems like long-term instability caused by leakage and volatilizations of electrolytes.
    In this study, to improve the stability, sealing, and conversion efficiency of the liquid-junction QDSSCs, an alternative electrolyte, gel electrolytes using organic polymer and inorganic nanoparticle (NP) gelators was attempted.
    Herein, we developed a noble water-based polymer gel electrolyte utilizing Xanthan gum (XG), which has thixotropic property, higher water solubility and environmentally friendly. Owing to the lower mobility of electrons in the liquid-junction TiO2 NPs was added which can improve ion conductivity and charge transfer.
    The charge recombination at the photoanode/electrolyte interface was emarkably inhibited with the addition of XG and TiO2 NP to the polysulfide electrolyte. Additionally, incorporation of TiO2 NPs increases VOC by adjusting photoanode fermi level. With our best condition XG/NP electrolyte, the efficiency of CIS-based QDSSCs was improved from 6.48 ± 0.15% to 7.06 ± 0.06%. And the efficiency of CISe-based QDSSCs was improved from 6.79 ± 0.10% to 8.00 ± 0.21%. To the best of our knowledge, this is the highest efficiency based on water-based XG/TiO2 electrolytes for CIS and CISe QDSSCs.

    致謝 I 摘要 II Abstract III 總目錄 IV 圖目錄 VII 表目錄 X 第一章 序論 1 1.1前言 1 1.2太陽能電池應用及發展概況 2 1.2.1第一代太陽能電池──基板型矽晶太陽能電池 2 1.2.2第二代太陽能電池──薄膜型太陽能電池 3 1.2.3第三代太陽能電池──含有機物及奈米科技之薄膜型太陽能電池 3 1.2.4第四代太陽能電池──多層結構薄膜太陽能電池 4 1.3研究動機 4 第二章 文獻回顧 6 2.1量子點特性 6 2.1.1量子侷限效應 (Quantum Confinement Effect) 7 2.1.2衝擊離子化 (Impact Ionization) 9 2.1.3歐傑再結合(Auger Recombination) 10 2.2量子點敏化太陽能電池基本原理 10 2.3電池元件 12 2.3.1導體基材 12 2.3.2氧化物半導體 12 2.3.3光敏化劑 15 2.3.4電解液 16 2.3.5背電極 17 2.4量子點敏化劑合成方法 18 2.4.1原位生成法 19 2.4.2非原位生成法(Ex situ) 21 2.5 電解液合成方法 28 2.5.1 液態 28 2.5.2 膠態(Quasi-Solid State / Gel) 29 2.5.3 固態 32 第三章 實驗藥品與步驟 34 3.1實驗藥品 34 3.1.1透明導電玻璃 34 3.1.2導電基板的清洗 34 3.1.3二氧化鈦薄膜光電極 34 3.1.4量子點合成 34 3.1.5 ZnS鈍化層 35 3.1.6電解液 35 3.1.7二氧化鈦奈米粒子 35 3.1.8 CuS背電極 35 3.1.9元件封裝 35 3.2實驗儀器 36 3.3實驗流程大綱 37 3.4導電玻璃清洗 37 3.5光電極薄膜製備 37 3.6 量子點敏化劑製備 38 3.7 共吸附劑配置 40 3.8 鈍化層配置 40 TiO2奈米粒子配置 41 3.10 電解液配置 41 3.11背電極配置 41 3.12電池元件封裝 42 第四章 結果與討論 44 4.1 奈米材料結構分析 46 4.2 電解液離子電導度分析 48 4.3電解液擴散係數分析 49 4.4 太陽光電轉換效率 52 4.4.1不同比例黃原膠光電轉換分析 54 4.4.2黃原膠添加不同重量比TiO2奈米粒子多硫化物電解液之光電轉換分析 56 4.5 入射光電轉換效率 59 4.6 電流穩定性分析 60 4.7 EIS電化學阻抗分析 61 4.8 OCVD開路電壓衰退分析 66 第五章 結論與未來展望 68 參考文獻 69

    1. O. Ellabban, H. Abu-Rub, and F. Blaabjerg, Renew. Sust. Energ. Rev., 2014, 39, 748-764.
    2. N.R.E. Laboratory(NREL). 2018; Available from: https://www.nrel.gov/pv/.
    3. O. RS, Light sensitive electric device. Light-sensitive electricdevice including silicon. 1941.
    4. E. Centurioni and D. Iencinella, IEEE Electron Device Letters, 2003, 24(3), 177-179.
    5. C.R. Wronski and D.E. Carlson, Amorphous silicon solar cells, in Clean electricity from photovoltaics. 2001, World Scientific. p. 199-243.
    6. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature, 1976, 261(5559), 402.
    7. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737.
    8. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J.M. Richter, M. Alsari, E.P. Booker, E.M. Hutter, and A.J. Pearson, Nature, 2018, 555(7697), 497.
    9. W. Feng, L. Zhao, J. Du, Y. Li, and X. Zhong, J. Mater. Chem., 2016, 4(38), 14849-14856.
    10. W. Feng, Y. Li, J. Du, W. Wang, and X. Zhong, J. Mater. Chem., 2016, 4(4), 1461-1468.
    11. H. Kim, I. Hwang, and K. Yong, ACS. Appl. Mater. Inter., 2014, 6(14), 11245-11253.
    12. Y.-H. Chiang, K.-Y. Lin, Y.-H. Chen, K. Waki, M.A. Abate, J.-C. Jiang, and J.-Y. Chang, J. Mater. Chem., 2018, 6(20), 9629-9641.
    13. A.P. Alivisatos, Science, 1996, 271(5251), 933.
    14. Y. Wang and N. Herron, J.Phy.Chem, 1991, 95(2), 525-532.
    15. M. Green, Curr, Opin. Solid. St. M., 2002, 6(4), 355-363.
    16. Nanosys.
    17. P.-Y. Lai, C.-C. Huang, T.-H. Chou, K.-L. Ou, and J.-Y. Chang, Acta Biomaterialia, 2017, 50, 522-533.
    18. A. Moyez, A. Dhar, P. Sarkar, H.S. Jung, and S. Roy, Reviews in Advanced Sciences and Engineering, 2016, 5(1), 51-64.
    19. R.D. Schaller and V.I. Klimov, Phys. Rev. Lett., 2004, 92(18), 186601.
    20. M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, and C. Lin, Sust. Energ. Fuels, 2017, 1(6), 1217-1231.
    21. 楊明輝, 工業材料, 2000, 189, 161-174.
    22. K. Keis, L. Vayssieres, S.-E. Lindquist, and A. Hagfeldt, Nanostruct. Mater., 1999, 12(1-4), 487-490.
    23. P. Hoyer, R. Vogel, and H. Weller, J. Phys. Chem., 1994, 98(12), 3183-3188.
    24. K. Sayama, H. Sugihara, and H. Arakawa, Chemistry of Materials, 1998, 10(12), 3825-3832.
    25. C. Nasr, S. Hotchandani, W.Y. Kim, R.H. Schmehl, and P.V. Kamat, J.Phy.Chem.B, 1997, 101(38), 7480-7487.
    26. B. Farrow and P.V. Kamat, J. Am. Chem. Soc., 2009, 131(31), 11124-11131.
    27. Z. Li, L. Yu, Y. Liu, and S. Sun, Electrochim. Acta, 2015, 153, 200-209.
    28. J. Jiao, Z.-J. Zhou, W.-H. Zhou, and S.-X. Wu, Mater. Sci. Semicond. Process., 2013, 16(2), 435-440.
    29. I. Robel, V. Subramanian, M. Kuno, and P.V. Kamat, J. Am. Chem. Soc., 2006, 128(7), 2385-2393.
    30. Z. Li, L. Yu, Y. Liu, and S. Sun, Electrochim. Acta, 2014, 129, 379-388.
    31. Y. Bu, Z. Chen, W. Li, and J. Yu, ACS. Appl. Mater. Inter., 2013, 5(11), 5097-5104.
    32. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, J. Mater. Chem., 2011, 21(40), 15903-15905.
    33. H. Chen, W. Li, H. Liu, and L. Zhu, Electrochem. Commun., 2011, 13(4), 331-334.
    34. S.-K. Kim, S. Park, M.-K. Son, and H.-J. Kim, Electrochim. Acta, 2015, 151, 531-536.
    35. Y. Zhao, H. Guo, H. Hua, Y. Xi, and C. Hu, Electrochim. Acta, 2014, 115, 487-492.
    36. J. Duan, H. Zhang, Q. Tang, B. He, and L. Yu, J. Mater. Chem., 2015, 3(34), 17497-17510.
    37. M. Mohamad, B. Haq, R. Ahmed, A. Shaari, N. Ali, and R. Hussain, Mater. Sci. Semicond. Process., 2015, 31, 405-414.
    38. L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, and L. Sun, J. Am. Chem. Soc., 2011, 133(22), 8458-8460.
    39. Y. Choi, M. Seol, W. Kim, and K. Yong, J.Phy.Chem.C, 2014, 118(11), 5664-5670.
    40. J. Yang and X. Zhong, J. Mater. Chem., 2016, 4(42), 16553-16561.
    41. V. González-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Giménez, Q. Shen, T. Dittrich, and I. Mora-Seró, PCCP, 2013, 15(33), 13835-13843.
    42. A. Tubtimtae, M.-W. Lee, and G.-J. Wang, J. Power Sources, 2011, 196(15), 6603-6608.
    43. C.-C. Chang, J.-K. Chen, C.-P. Chen, C.-H. Yang, and J.-Y. Chang, ACS. Appl. Mater. Inter., 2013, 5(21), 11296-11306.
    44. R. Zhou, L. Wan, H. Niu, L. Yang, X. Mao, Q. Zhang, S. Miao, J. Xu, and G. Cao, Sol. Energy Mater. Sol. Cells, 2016, 155, 20-29.
    45. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, and X. Zhong, ACS nano, 2013, 7(6), 5215-5222.
    46. J. Yang, J.-Y. Kim, J.H. Yu, T.-Y. Ahn, H. Lee, T.-S. Choi, Y.-W. Kim, J. Joo, M.J. Ko, and T. Hyeon, PCCP, 2013, 15(47), 20517-20525.
    47. P.-N. Li, A.V. Ghule, and J.-Y. Chang, J. Power Sources, 2017, 354, 100-107.
    48. L. Mu, C. Liu, J. Jia, X. Zhou, and Y. Lin, J. Mater. Chem., 2013, 1(29), 8353-8357.
    49. Y.-q. Wang, Y.-c. Rui, Q.-h. Zhang, Y.-g. Li, and H.-z. Wang, ACS. Appl. Mater. Inter., 2013, 5(22), 11858-11864.
    50. N. Zhou, Y. Yang, X. Huang, H. Wu, Y. Luo, D. Li, and Q. Meng, ChemSusChem, 2013, 6(4), 687-692.
    51. A. Sahasrabudhe and S. Bhattacharyya, Chemistry of Materials, 2015, 27(13), 4848-4859.
    52. Y. Dong, J. Choi, H.-K. Jeong, and D.H. Son, J. Am. Chem. Soc., 2015, 137(16), 5549-5554.
    53. D.J. Norris, A.L. Efros, and S.C. Erwin, Science, 2008, 319(5871), 1776-1779.
    54. P.K. Santra and P.V. Kamat, J. Am. Chem. Soc., 2012, 134(5), 2508-2511.
    55. C.V. Gopi, M. Venkata-Haritha, H. Seo, S. Singh, S.-K. Kim, M. Shiratani, and H.-J. Kim, Dalton Transactions, 2016, 45(20), 8447-8457.
    56. N. Firoozi, H. Dehghani, and M. Afrooz, J. Power Sources, 2015, 278, 98-103.
    57. B.B. Srivastava, S. Jana, and N. Pradhan, J. Am. Chem. Soc., 2010, 133(4), 1007-1015.
    58. F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R.C. Massé, S. Peng, J. Liu, and G. Cao, J. Mater. Chem., 2016, 4(38), 14773-14780.
    59. T. Shen, L. Bian, B. Li, K. Zheng, T. Pullerits, and J. Tian, Applied physics letters, 2016, 108(21), 213901.
    60. J.-Y. Kim, J. Yang, J.H. Yu, W. Baek, C.-H. Lee, H.J. Son, T. Hyeon, and M.J. Ko, ACS nano, 2015, 9(11), 11286-11295.
    61. Y.-L. Lee and C.-H. Chang, J. Power Sources, 2008, 185(1), 584-588.
    62. V. Chakrapani, D. Baker, and P.V. Kamat, J. Am. Chem. Soc., 2011, 133(24), 9607-9615.
    63. Y. Liao, J. Zhang, W. Liu, W. Que, X. Yin, D. Zhang, L. Tang, W. He, Z. Zhong, and H. Zhang, Nano Energy, 2015, 11, 88-95.
    64. G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, and X. Zhong, J. Mater. Chem., 2016, 4(29), 11416-11421.
    65. J. Du, X. Meng, K. Zhao, Y. Li, and X. Zhong, J. Mater. Chem., 2015, 3(33), 17091-17097.
    66. H. Wei, G. Wang, J. Shi, H. Wu, Y. Luo, D. Li, and Q. Meng, J. Mater. Chem., 2016, 4(37), 14194-14203.
    67. C.-H. Chang and Y.-L. Lee, Applied Physics Letters, 2007, 91(5), 053503.
    68. S.Y. Chae, Y.J. Hwang, and O.-S. Joo, RSC. Adv., 2014, 4(51), 26907-26911.
    69. Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto, and S. Kuwabata, Chem. Lett., 2006, 36(1), 88-89.
    70. C.V. Gopi, M. Venkata-Haritha, S.-K. Kim, S.S. Rao, D. Punnoose, and H.-J. Kim, RSC. Adv., 2015, 5(4), 2963-2967.
    71. H. Zhang, K. Cheng, Y. Hou, Z. Fang, Z. Pan, W. Wu, J. Hua, and X. Zhong, Chem. Commun., 2012, 48(91), 11235-11237.
    72. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, and X. Zhong, J. Am. Chem. Soc., 2016, 138(12), 4201-4209.
    73. I. Hwang and K. Yong, ChemElectroChem, 2015, 2(5), 634-653.
    74. S. Wang and J. Tian, RSC. Adv., 2016, 6(93), 90082-90099.
    75. M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo, and C. Lin, Advanced Energy Materials, 2014, 4(9).
    76. W. Ke, G. Fang, H. Lei, P. Qin, H. Tao, W. Zeng, J. Wang, and X. Zhao, J. Power Sources, 2014, 248, 809-815.
    77. C.-Y. Lin, C.-Y. Teng, T.-L. Li, Y.-L. Lee, and H. Teng, J. Mater. Chem., 2013, 1(4), 1155-1162.
    78. C.V. Gopi, S.S. Rao, S.-K. Kim, D. Punnoose, and H.-J. Kim, J. Power Sources, 2015, 275, 547-556.
    79. L. Liu, C. Liu, W. Fu, L. Deng, and H. Zhong, ChemPhysChem, 2016, 17(5), 771-776.
    80. W. Liang, L. Zhu, H. Liu, F. Xi, and W. Li, Electrochim. Acta, 2015, 184, 285-294.
    81. Y. Bai, C. Han, X. Chen, H. Yu, X. Zong, Z. Li, and L. Wang, Nano Energy, 2015, 13, 609-619.
    82. F. Liu, J. Zhu, Y. Li, J. Wei, M. Lv, Y. Xu, L. Zhou, L. Hu, and S. Dai, J. Power Sources, 2015, 292, 7-14.
    83. C.K. Kamaja, R.R. Devarapalli, Y. Dave, J. Debgupta, and M.V. Shelke, J. Power Sources, 2016, 315, 277-283.
    84. C.S. Kim, S.H. Choi, and J.H. Bang, ACS. Appl. Mater. Inter., 2014, 6(24), 22078-22087.
    85. Y.L. Lee and Y.S. Lo, Advanced Functional Materials, 2009, 19(4), 604-609.
    86. Y. Zhang, J. Zhu, X. Yu, J. Wei, L. Hu, and S. Dai, Solar Energy, 2012, 86(3), 964-971.
    87. S. Gorer and G. Hodes, J.Phy.Chem, 1994, 98(20), 5338-5346.
    88. G. Zhu, L. Pan, T. Xu, and Z. Sun, J. Electroanal. Chem., 2011, 659(2), 205-208.
    89. G. Zhu, L. Pan, T. Xu, Q. Zhao, B. Lu, and Z. Sun, Nanoscale, 2011, 3(5), 2188-2193.
    90. G. Zhu, L. Pan, T. Xu, and Z. Sun, ACS. Appl. Mater. Inter., 2011, 3(8), 3146-3151.
    91. H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Grätzel, and M.K. Nazeeruddin, Nano Lett., 2009, 9(12), 4221-4227.
    92. T.P. Niesen and M.R. De Guire, Solid State Ionics, 2002, 151(1-4), 61-68.
    93. H. Pathan and C. Lokhande, Bull. Mater. Sci., 2004, 27(2), 85-111.
    94. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, and G. Cao, J.Phy.Chem.C, 2013, 117(51), 26948-26956.
    95. M. Patel, S. Sahu, A.K. Verma, P. AGNIHOTRI, and S. Tiwari, International Conference on Fiber Optics and Photonics, 2016, W3A. 37.
    96. S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, Nature Photonics, 2011, 5(8), 489.
    97. L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, and V.I. Klimov, J. Am. Chem. Soc., 2011, 133(5), 1176-1179.
    98. P. Brown and P.V. Kamat, J. Am. Chem. Soc., 2008, 130(28), 8890-8891.
    99. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, and U. Banin, ACS nano, 2010, 4(10), 5962-5968.
    100. Q. Zhang, T. Xu, D. Butterfield, M.J. Misner, D.Y. Ryu, T. Emrick, and T.P. Russell, Nano Lett., 2005, 5(2), 357-361.
    101. S.G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, J. Am. Chem. Soc., 2007, 129(41), 12571-12584.
    102. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, and E.H. Sargent, Chem. Rev., 2015, 115(23), 12732-12763.
    103. D. Sharma, R. Jha, and S. Kumar, Sol. Energy Mater. Sol. Cells, 2016, 155, 294-322.
    104. J.-Y. Chang, C.-H. Li, Y.-H. Chiang, C.-H. Chen, and P.-N. Li, ACS. Appl. Mater. Inter., 2016, 8(29), 18878-18890.
    105. C.-Y. Chou, C.-P. Lee, R. Vittal, and K.-C. Ho, J. Power Sources, 2011, 196(15), 6595-6602.
    106. R.K. Kokal, M. Deepa, A. Kalluri, S. Singh, I. Macwan, P.K. Patra, and J. Gilarde, PCCP, 2017, 19(38), 26330-26345.
    107. I.-P. Liu, L.-Y. Chen, and Y.-L. Lee, J. Power Sources, 2016, 325, 706-713.
    108. Z. Huo, L. Tao, S. Wang, J. Wei, J. Zhu, W. Dong, F. Liu, S. Chen, B. Zhang, and S. Dai, J. Power Sources, 2015, 284, 582-587.
    109. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, and X. Zhong, J. Mater. Chem., 2017, 5(27), 14124-14133.
    110. H.J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, and M. Grätzel, Nanotechnology, 2008, 19(42), 424003.
    111. I. Zarazúa, E. De la Rosa, T. López-Luke, J. Reyes-Gomez, S. Ruiz, C. Angeles Chavez, and J.Z. Zhang, J.Phy.Chem.C, 2011, 115(46), 23209-23220.
    112. J.-G. Chen, H.-Y. Wei, and K.-C. Ho, Sol. Energy Mater. Sol. Cells, 2007, 91(15-16), 1472-1477.
    113. R. Dang, Y. Wang, J. Zeng, Z. Huang, Z. Fei, and P.J. Dyson, J. Mater. Chem., 2017, 5(26), 13526-13534.
    114. J.P. Park, J.H. Heo, S.H. Im, and S.-W. Kim, J. Mater. Chem., 2016, 4(3), 785-790.
    115. F. Garcı́a-Ochoa, V.E. Santos, J.A. Casas, and E. Gómez, Biotechnol. Adv., 2000, 18(7), 549-579.
    116. S.J. Park, K. Yoo, J.-Y. Kim, J.Y. Kim, D.-K. Lee, B. Kim, H. Kim, J.H. Kim, J. Cho, and M.J. Ko, ACS nano, 2013, 7(5), 4050-4056.
    117. W.M. Girma, C.-H. Chen, C.-H. Yang, P.-I. Wang, K.-L. Ou, D.-J. Liaw, and J.-Y. Chang, RSC. Adv., 2017, 7(13), 7671-7678.
    118. K. Mohan, S. Dolui, B.C. Nath, A. Bora, S. Sharma, and S.K. Dolui, Electrochim. Acta, 2017, 247, 216-228.
    119. Y. Yang, J. Gao, Z. Zhang, S. Xiao, H.H. Xie, Z.B. Sun, J.H. Wang, C.H. Zhou, Y.W. Wang, and X.Y. Guo, Adv. Mater., 2016, 28(40), 8937-8944.
    120. H. Chae, D. Song, Y.-G. Lee, T. Son, W. Cho, Y.B. Pyun, T.-Y. Kim, J.H. Lee, F. Fabregat-Santiago, J. Bisquert, and Y.S. Kang, J.Phy.Chem.C, 2014, 118(30), 16510-16517.
    121. 郭. 陳頤承, 陳俊亨. 太陽電池量測技術. 2008; Available from: http://www.materialsnet.com.tw/DocView.aspx?id=7004.
    122. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, and K. Sopian, Renew. Sust. Energ. Rev., 2014, 37(Supplement C), 397-407.
    123. 楊昇晃, 微型燃料電池設計、製作與電化學阻抗分析. 2005: 國立中山大學機械與機電工程學系.
    124. M.r.S. Góes, E. Joanni, E.C. Muniz, R. Savu, T.R. Habeck, P.R. Bueno, and F. Fabregat-Santiago, J.Phy.Chem.C, 2012, 116(23), 12415-12421.
    125. P. Sudhagar, T. Song, D.H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W.M. Sigmund, W.I. Park, U. Paik, and Y.S. Kang, J.Phy.Chem.Lett, 2011, 2(16), 1984-1990.
    126. L. Tao, Z. Huo, S. Dai, Y. Ding, J. Zhu, C. Zhang, B. Zhang, J. Yao, M.K. Nazeeruddin, and M. Grätzel, J.Phy.Chem.C, 2014, 118(30), 16718-16726.
    127. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, and J. Bisquert, Acc. Chem. Res., 2009, 42(11), 1848-1857.
    128. S. Chang, H. Wang, Y. Hua, Q. Li, X. Xiao, W.-K. Wong, W.Y. Wong, X. Zhu, and T. Chen, J. Mater. Chem., 2013, 1(38), 11553-11558.
    129. K. Zhao, Z. Pan, and X. Zhong, J.Phy.Chem.Lett, 2016, 7(3), 406-417.
    130. Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong, and X. Zhong, Chemistry of Materials, 2016, 28(7), 2323-2330.

    無法下載圖示 全文公開日期 2023/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE