簡易檢索 / 詳目顯示

研究生: 蕭姿俞
Tzu-Yu Hsiao
論文名稱: 相位移技術於掃描3D彩色模型之適用性研究
Study on Capability of Phase-Shifting Method in Scanning 3D Color Models
指導教授: 林宗翰
Tzung-han Lin
口試委員: 羅梅君
Mei-Chun Lo
林宗翰
Tzung-han Lin
孫沛立
Pei-Li Sun
姚智原
Chih-Yuan Yao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 三維重建相位移相位展開相位誤差修正
外文關鍵詞: 3D reconstruction, phase-shifting, phase unwrapping, phase error correction
相關次數: 點閱:275下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相位移技術為三維精密測量技術中非接觸式量測的技術之一,利用投射條紋影像至物體表面來量測三維表面3D資料。近年因3D列印產業的興盛,相位移技術也被廣泛運用於三維物體的重建。由於原始的三步相位移其重建結果之相位誤差較大,而衍伸出了多步相位移演算法,利用投影三張以上的條紋影像來降低相位誤差。因此,本論文針對位移步數進行探討,期望找出以最少相位移步數,即最少的投影條紋張數,其重建結果可與投影多張條紋影像之結果相同。並探討相位移技術應用於彩色模型掃描時,所適用的顏色範圍。
    由實驗結果得知,在五步相位移之後的相位誤差修正前後並無明顯差別,且在相位誤差修正前,五步相位移的平均誤差已趨近於十二步相位移的平均誤差。因此,使用五步相位移即可得到較好的重建結果。此外。物體表面傾斜方向對相位計算結果影響不大;而若要對彩色模型進行掃描,則建議模型顏色的明度(L*)宜介於51 ~ 98。


    Phase-shifting technology is one of non-contact measurement methods in 3D precision measurement technology, which projects fringe images on the object surface to measure the 3D surface. In last few decades, the 3D printing industry is getting popular and, phase-shift technology is therefore widely used in 3D reconstruction. Due to three-step phase-shifting method is likely inaccurate in 3D reconstruction, several multi-step phase-shifting algorithms have been proposed. In this thesis, the author would like to determine the minimum steps, as well as minimum projected images, in phase-shifting method. We expect that the accuracy of 3D reconstruction can be as good as those by multi-step phase-shifting methods. Finally, we further discuss the effects of color in the phase-shifting algorithm.
    The experiment result shows the phase error in the five-step phase-shifting method is similar to that in twelve-step, as well as higher, phase-shifting methods. As a result, five-step phase-shifting method without additional correction is recommended. The surface direction of a scanned surface does not affect the phase estimation. For scanning a color 3D object, we recommend that the lightness of the object should be between 51 and 98.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第 一 章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第 二 章 文獻探討 3 2.1 三維掃描技術 3 2.1.1 接觸式掃描 3 2.1.2 非接觸式掃描 4 2.2 相位移技術 7 2.3 相位展開技術 9 2.4 相位誤差 12 2.5 非正弦誤差與非線性誤差校正 15 2.5.1 查表校正法 15 2.5.2 疊代法 18 第 三 章 研究方法 21 3.1 研究目的 21 3.1.1 多步相位移誤差修正比較 21 3.1.2 包裹相位方向性差異 22 3.1.3 顏色對相位移演算法之影響 23 3.1.4 物體表面高度重建 25 3.2 實驗架設 27 3.3 影像變形修正 30 3.4 多步相位移演算法 31 3.5 相位誤差對照表 33 3.6 相位展開演算法 36 3.7 相位對高度轉換演算法 39 第 四 章 實驗結果與分析 42 4.1 多步相位移誤差修正比較結果分析 42 4.2 包裹相位方向性差異結果分析 48 4.3 顏色對相位移演算法之影響結果分析 52 4.4 物體表面高度重建結果分析 56 第 五 章 結論 58 參考文獻 60 附錄 64

    [1] M. A. Ebrahim, 3D Laser scanners: History, Applications, and Future, 2011. Ch. 2.
    [2] B. Bidanda, S. Motavalli, and K. Harding, “Reverse engineering: an evaluation of prospective non-contact technologies and application in manufacturing systems, ” Int. Journal of Computer Integrated Manufacturing vol.4, no.3, pp.145-156, 1991.
    [3] D. Malacara, editor. Optical shop testing, 3rd ed. New York: John Weily and Sons, 2007. pp. 514-515, Ch. 14.
    [4] G. Mauvoisin, F. Brémand, and A. Lagarde, “Three-dimensional shape reconstruction by phase-shifting shadow moire,” Applied Optics, vol. 33, no. 11, pp. 2163–2169, 1994.
    [5] K. Creath, “Phase-Measurement Interferometry Techniques,” Progress in Optics, vol. 26, no. C, pp. 349–393, 1988.
    [6] J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, ‘‘Digital Wavefront Measuring Interferometer for Testing Optical Surfaces, Lenses,’’ Applied Optics, vol. 13, no. 11, pp. 2693-2703, 1974.
    [7] P. Carre´, ‘‘Installation and use of photoelectric comparator and interference of the International Bureau of Weights and Measure,’’ Metrologia, vol. 2, no. 1, pp. 13-23, 1966.
    [8] P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Applied Optics, vol. 45, no. 21, pp. 5086–5091, 2006.
    [9] D. C. Ghiglia, M. D. Pritt, Two-dimensional Phase Unwrapping Theory, Algorithms and Software, Wiley, 1998. pp. 122–127, 387–394, Ch. 6.
    [10] W. W. Macy, “Two-dimensional fringe-pattern analysis,” Applied Optics, vol. 22, no. 23, p. 3898, 1983.
    [11] J. Schwider and L. Zhou, ‘‘Dispersive interferometric profilometer,’’ Optics Letters, vol. 19, no. 13, pp. 995-997, 1994.
    [12] J . Schmit and K. Creath, ‘‘Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,’’ Applied Optics, vol. 34, no. 19, pp. 3610-3619, 1995.
    [13] J. Schwider, R. Burrow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, ‘‘Digital wave-front measuring interferometry: some systematic error sources,’’ Applied Optics, vol. 22, no. 21, pp. 3421-3432, 1983.
    [14] P. Hariharan, B. F. Oreb, and T. Eiju, ‘‘Digital phase-shifting interferometry: a simple error compensation phase calculation algorithm,’’ Applied Optics, vol. 26, no. 13, pp. 2504-2506, 1987.
    [15] J. Schmit and K. Creath, ‘‘Window function influence on phase error in phase-shifting algorithms,’’ Applied Optics, vol. 35, no. 28, pp. 5642-5649, 1996.
    [16] P. J. de Groot, ‘‘Extending the unambigous range of two-color interferometers,’’ Applied Optics, vol. 33, no. 25, pp. 5948-5953, 1994.
    [17] S. Zhang, and S.-T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Applied Optics, vol. 46, no. 1, pp. 36-43, 2007.
    [18] B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Optical Letters, vol. 34, no. 4, pp. 416–418, 2009.
    [19] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Institute of Electrical and Electronics Engineers (IEEE), pp. 1106–1112, 1997.
    [20] G. Bradski, Learning OpenCV, pp. 370–404. O’Reilly, 2008.
    [21] S. Zhang, High-Speed 3D Imaging with Digital Fringe Projection Techniques, CRC Press, UK, 2016. pp. 74–75.
    [22] Y. D. Zhang, S. H. Wang, G. L. Ji, and Z. C. Dong, “An improved quality guided phase unwrapping method and its applications to MRI,” Progress in Electromagnetics Research-Pier, vol. 145, no. 4, pp. 273–286, 2014.
    [23] C. Zhang, P. S. Huang, and F. P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Applied Optics, vol. 41, no. 28, pp. 5896–904, 2002.
    [24] V. Srinivasan, H.-C. Liu, and M. Halioua, “Automated phase- measuring profilometry of 3-D diffuse objects,” Applied Optics, vol. 23, no. 18, pp. 3105-3108, 1984.
    [25] M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Applied Optics, vol. 22, no. 24, pp. 3977-3982, 1983.
    [26] R. D. Myers, ColorChecker Passport Technical Review. July 2010.
    [27] J. M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Applied Optics, vol. 32, no. 17, pp. 3047-3052, 1993.
    [28] H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Applied Optics, vol. 36, no. 13, pp. 2770-2775, 1997.
    [29] C. Zhang, “Reducing the Dynamic Errors of Coordinate Measuring Machines,” Journal of Mechanical Design, vol. 125, no. 4, pp. 831–839, 2003.
    [30] J. Geng, “Structured-light 3D surface imaging : a tutorial,” Advances in Optics and Photonics, Vol. 3, no. 2, pp. 128-160, 2011.
    [31] D. A. Forsyth, J Ponce, Computer Vision: A Modern Approach, 2002. Ch.12-13.
    [32] R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Optical Engineering, vol. 19, no. 1, pp. 139-144, 1980.

    QR CODE