簡易檢索 / 詳目顯示

研究生: 柯莉莉
Liana - Kentjono
論文名稱: Removal of Boron from Polarizer Manufacturing Wastewater by Using Mg-Al (NO3) Layered Double Hydroxides
Removal of Boron from Polarizer Manufacturing Wastewater by Using Mg-Al (NO3) Layered Double Hydroxides
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 張維欽
Wei-qin Chang
顧洋
Young Ku
黃志彬
Chih-Pin Huang
李篤中
Duu-Jong Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 112
中文關鍵詞: 吸附,硼,碘,離子交換,鎂鋁硝酸雙層金屬氫氧化物,光電,偏光板,廢水
外文關鍵詞: ion exchange; LDHs, optoelectronic, polarizer
相關次數: 點閱:257下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

偏光板製造業產生含有高濃度硼、碘和化學需氧量的廢水。在此研究中,我們合成鎂鋁硝酸雙層金屬氫氧化物(Mg-Al(NO3) - layered double hydroxides, LDHs),用為移除合成廢水與偏光板製造業廢水中的硼。去除硼程序中的反應機制將是被探討的重點。
鎂鋁硝酸雙層金屬氫氧化物可以移除廢水中98%以上的硼,而最適合硼移除的酸鹼值為9.0。實驗數據也與蘭謨爾吸附等溫線(Langmuir isotherm)相符合。對於合成廢水,硼的單層吸收負載能力(Qo)和蘭謨爾吸附常數(b)分別為26.1 mg/g與 0.36 L/mg;而在室溫下,酸鹼值為9.0的工廠廢水,硼的單層吸收負載能力(Qo)和蘭謨爾吸附常數(b)分別為37.9 mg/g 與0.0806 L/mg。由熱力學的分析顯示,硼的移除過程是自發性、放熱並且亂度是增加的。然而,移除硼的過程中,與溫度較無較大的關係。由酸鹼值效應的實驗結果與反應熱(ΔHo)值等於3.22 kcal/mol看起來,硼的移除是離子交換與物理吸附機制的結合。利用偽一階(Pseudo first order)及二階(Pseudo second order)動力學模式所產生的數據相當符合添加鎂鋁硝酸雙層金屬氫氧化物時所得到的實驗數據。由偽一階(Pseudo first order)及二階(Pseudo second order)動力學模式所計算出的反應活化能分別為3.25 kJ/mol與7.14 kJ/mol。在計算化學劑量時,硝酸根離子的釋放量高於被鎂鋁硝酸雙層金屬氫氧化物所吸附的總離子量。大量的硝酸根離子被釋出可能是因為與碳酸根離子產生交換。廢水中的碘離子雖然也被移除,並不能與硼離子來競爭鎂鋁硝酸雙層金屬氫氧化物表面的活性位置,這是因鎂鋁硝酸雙層金屬氫氧化物對於碘離子的選擇性較低的緣故。


The polarizer manufacturing industries generate wastewater that contains high concentration of boron, iodide, and chemical oxygen demand (COD). In this study Mg-Al (NO3) layered double hydroxides (LDHs) were used to remove boron from synthetic wastewater and polarizer manufacturing wastewater. The mechanism in boron removal process was investigated.
LDHs showed high efficiency (up to 98%) in removing boron from wastewater. The optimum pH for boron removal process was 9.0. The boron uptake capacity (Qo) value and Langmuir constant (b) value for synthetic wastewater were 26.1 mg/g and 0.36 L/mg, respectively. At room temperature and pH~9.0, the boron uptake capacity (Qo) value and Langmuir constant (b) value for industrial wastewater were 37.9 mg/g and 0.0806 L/mg, respectively. The boron removal process was spontaneous, exothermic and exhibited randomness behavior as indicated by thermodynamic parameters. However, the boron removal process was independent on temperature. The ΔHo value of 3.22 kcal/mol suggested there was a combination of ion exchange and physical adsorption mechanisms. Pseudo first order and pseudo second order kinetic models perfectly represented the experimental data of boron removal by using LDHs. The activation energy obtained from the pseudo first order and pseudo second order kinetic models were 3.25 kJ/mol and 7.14 kJ/mol, respectively. In the stoichiometry calculation the nitrate anions released was higher than total anions taken up by LDHs. The excessive nitrate anions released may be due to the exchange with carbonate anions. Iodide anions present in wastewater can not compete with borate anions for LDHs surface sites because of low selectivity of LDHs toward iodide anions.

ABSTRACT (ENGLISH) …………………………………………………………………i ABSTRACT (CHINESE) …………………………………………………………………ii ACKNOWLEDGEMENTS ………………………………………………………………iii TABLE OF CONTENT …………………………………………………………………iv LIST OF FIGURES ………………………………………………………………………vi LIST OF TABLES ………………………………………………………………………viii CHAPTER I. INTRODUCTION …………………………………………………………1 1.1. Background ……………………………………………………………………1 1.2. Objectives ……………………………………………………………………2 CHAPTER II. LITERATURE REVIEW …………………………………………………3 2.1. Polarizer structure and manufacturing process …………………………3 2.2. Theory of Boron and Removal of Boron …………………………………….4 2.2.1. Source of Boron …………………………………………………………..4 2.2.2. Boron Deficiency and Toxicity …………………………………………..4 2.2.3. Regulation for Boron level ……………………………………………….5 2.2.4. Removal of boron …………………………………………...............6 2.2.5. Removal of boron by adsorption processes ……………………………6 2.3. Theory in Layered Double Hydroxides (LDHs) ……………………………12 2.3.1. LDHs definition and application ………………………………………12 2.3.2. The Structure of LDHs …………………………………………………12 2.3.3. Synthesis of LDHs …………………………………………………14 2.4. Adsorption of boron on LDHs ………………………………………16 2.5. Adsorption and Ion Exchange…………………………………………………20 2.5.1. Adsorption ………………………………………………………………20 2.5.2. Ion Exchange ……………………………………………………………21 2.6. Equilibrium Isotherm………………………………………………………….21 2.7. Kinetic Study ………………………………………………………………….22 CHAPTER III. MATERIALS AND METHODS ……………………………………….24 3.1. Source of Wastewater …………………………………………………………24 3.2. Chemicals ……………………………………………………………………..24 3.3. Equipments and Instruments …………………………………………………25 3.4. Experimental Method …………………………………………………………27 3.4.1. Synthesis of LDHs ………………………………………………………27 3.4.2. Removal of boron experiment …………………………………………..28 3.4.3. Sample analytical methods ……………………………………………..29 CHAPTER IV. RESULTS AND DISCUSSION ………………………………………..31 4.1. Characterization of LDHs…………………………………………………….31 4.2. Removal of boron experiment by using LDHs …………………………….41 4.2.1. Synthetic wastewater ……………………………………………………41 4.2.1.1. Equilibrium time determination …………………………………41 4.2.1.2. Effect of equilibrium pH ………………………………………..43 4.2.1.3. Effect of LDHs dose …………………………………………....46 4.2.1.4. Equilibrium isotherm ……………………………………………48 4.2.1.5. Stoichiometry calculation …………………………………….....50 4.2.2. Industrial wastewater ……………………………………………………51 4.2.2.1. Characteristics of industrial wastewater………………………...51 4.2.2.2. Effect of equilibrium pH ………………………………………...52 4.2.2.3. Effect of LDHs dose ……………………………………………56 4.2.2.4. Effect of temperature ……………………………………………58 4.2.2.5. Effect of other ions ………………………………………………63 4.2.2.6. Kinetic study ……………………………………………………67 4.2.2.7. Stoichiometry calculation ……………………………………….70 4.3. Analysis of loaded LDHs …………………………………………………….72 4.4. Removal of COD by using LDHs …………………………………………….77 4.5. Mechanism of boron removal …………………………………………………77 CHAPTER V. CONCLUSIONS AND SUGESTIONS ………………………………...79 5.1. Conclusions ……………………………………………………………………79 5.2. Suggestions ……………………………………………………………………80 REFERENCES …………………………………………………………………………..81 APPENDIX …………………………………………………………………………….A-1

Agabekov, V., Ariko, N., Ivanova, N., Filippovich, L., Shahab, S., Matusevich, V., Pismennaya, K., Kiessling, A., and Kowarschik, R., Chemical and optical investigations of film polarizers with azodyes, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5464, pp. 292-297 (2004).

Aisawa, S., Hirahara, H., Uchiyama, H., Takahashi, S., and Narita, E., Synthesis and Thermal Decomposition of Mn-Al Layered Double Hydroxides, Journal of Solid State Chemistry, Vol. 167 (1), pp. 152-159 (2002).

Anirudhan, T.S. and Radhakrishnan, P.G., Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, The Journal of Chemical Thermodynamics, Vol. 40 (4), pp. 702-709 (2008).

Ay, A.N., Zümreoglu-Karan, B., and Temel, A., Boron removal by hydrotalcite-like, carbonate-free Mg-Al-NO3-LDH and a rationale on the mechanism, Microporous and Mesoporous Materials, Vol. 98 (1-3), pp. 1-5 (2007).

Bouguerra, W., Mnif, A., Hamrouni, B., and Dhahbi, M., Boron removal by adsorption onto activated alumina and by reverse osmosis, Desalination, Vol. 223 (1-3), pp. 31-37 (2008).

Camacho-Cristόbal, J.J., Rexach, J., and González-Fontes, A., Boron in Plants: Deficiency and Toxicity, Journal of Integrative Plant Biology, Vol. 50 (10), pp. 1247-1255 (2008).

Cavani, F., Trifiró, F., and Vaccari, A., Hydrotalcite-Type Anionic Clays: Preparation, Properties and Application, Catalysis Today, Vol. 11 (2), pp. 173-301 (1991).

Çelik, Z.C., Can, B.Z., and Kocakerim, M.M., Boron removal from aqueous solutions by activated carbon impregnated salicylic acid, Journal of Hazardous Materials, Vol. 152 (1), pp. 415-422 (2008).

Cengeloglu, Y., Tor, A., Arslan, G., Ersoz, M., and Gezgin, S., Removal of boron from aqueous solution by using neutralized red mud, Journal of Hazardous Materials, Vol. 142 (1-2), pp. 412-417 (2007).

Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., and Hirotsu, T., Adsorption of Phosphate from Seawater on Calcined MgMn-Layered Double Hydroxides, Journal of Colloid and Interface Science, Vol. 290 (1), pp. 45-51 (2005).

Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., and Hirotsu, T., Synthesis and Phosphate Uptake Behavior of Zr4+ Incorporated MgAl-Layered Double Hydroxides, Journal of Colloid and Interface Science, Vol. 313 (1), pp. 53-63 (2007).

Cornell, R.M. and Schwertmann, U., The iron oxide: structure, properties, reactions, occurrences, and uses, 2nd edition, Willey-VCH: Germany (2003).

Costantino, U., Marmottini, F., Nocchetti, M., and Vivani, R., New synthetic routes to hydrotalcite-like compounds—characterisation and properties of the obtained materials, European Journal of Inorganic Chemistry (10), pp. 1439–1446 (1998).

Das, J., Das, D., Dash, G.P., and Parida, K.M., Studies on Mg/Fe hydrotalcite-like-compound (HTlc)—I, Removal of inorganic selenite (SeO32−) from aqueous medium, Journal of Colloid and Interface Science, Vol. 251 (1), pp. 26–32 (2002).

Das, N.N., Konar, J., Mohanta, M.K., and Srivastava, S.C., Adsorption of Cr(VI) and Se(IV) from Their Aqueous Solutions onto Zr4+-substituted ZnAl/MgAl-Layered Double Hydroxides: Effect of Zr4+ Substitution in The Layer, Journal of Colloid and Interface Science, Vol. 270 (1), pp. 1-8 (2004).
Das, J., Patra, B.S., Baliarsingh, N., and Parida, K.M., Adsorption of Phosphate by Layered Double Hydroxides in Aqueous Solution, Applied Clay Science, Vol. 32 (3-4), pp. 252-260 (2006).

Das J., Patra, B. S., Baliarsingh, N., and Parida, K.M., Calcined Mg-Fe-CO3 LDH as an adsorbent for the removal of selenite, Journal of Colloid and Interface Science, Vol. 316 (2), pp. 216-223 (2007).

Dionisiou, N., Matsi, T., and Misopolinos, N.D., Use of Magnesia for Boron Removal from Irrigation Water, Journal of Environmental Quality, Vol. 35 (6), pp. 2222-2228 (2006).

Do, D.D., Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London (1998).

Dydo, P., Turek, M., Ciba, J., Trojanowska, J., and Kluczka, J., Boron removal from landfill leachate by means of nanofiltration and reverse osmosis, Desalination, Vol. 185 (1-3), pp. 131-137 (2005).

Erickson, K.L., Bostrom, T.E., and Frost, R.L., A study of structural memory effects in synthetic hydrotalcites using environmental SEM, Materials Letters, Vol. 59 (2-3), pp. 226–229 (2005).

European Communities (Drinking Water) Regulations 2007, S.I. No. 106 of 2007, European Communities: Dublin (2007).

Ferreira, O.P., Moraes, S.G., Duran, N., Cornejo, L., and Alves, O.L., Evaluation of boron removal from water by hydrotalcite-like compounds, Chemosphere, Vol. 62 (1), pp. 80–88 (2006).

Fujimura, Y., Kamijo, T., and Yoshimi, H., High-performance optical films for LCDs, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5213, pp. 183-193 (2004).

Fujita, Y., Hata, T., Nakamura, M., Iyo, T., Yoshino, T., and Shimamura, T., A study of boron adsorption onto activated sludge, Biosource Technology, Vol. 96 (12), pp. 1350-1356 (2005).

Goh, K.H., Lim, T.T., and Dong, Z., Application of Layered Double Hydroxides for Removal of Oxyanions: A Review, Water Research, Vol. 42 (6-7), pp. 1343-1368 (2008).

García-Soto, M.M.F. and Camacho, E.M., Boron removal by means of adsorption with magnesium oxide, Separation and Purification Technology, Vol. 48 (1), pp. 36-44 (2006).

Guidelines for Drinking-Water Quality, first addendum to third edition, Vol. 1, Recommendations, World Health Organisation: Geneva (2006)

He, J., Li, B., Evans, D.G., and Duan, X., Synthesis of Layered Double Hydroxides in An Emulsion Solution, Colloid and Surface A: Physicochemical and Engineering Aspects, Vol. 251 (1-3), pp. 191-196 (2004).

Helfferich, F., Ion exchange, Dover Publications, Inc.: New York (1995).

Ho, Y.S. and McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research, Vol. 34 (3), pp. 735-742 (2000).

Hobbs, M.Y. and Reardon, E.J., Effect of pH on boron coprecipitation by calcite: Further evidence for nonequilibrium partitioning of trace elements, Geochimica et Cosmochimica Acta, Vol. 63 (7-8), pp. 1013-1021 (1999).
Inglezakis, V.J. and Poulopoulos, S.G., Adsorption, Ion Exchange and Catalysis-Design Operations and Environmental Applications, Elsevier: Amsterdam (2006)

Itakura, T., Sasai, R., and Itoh, H., Precipitation recovery of boron from wastewater by hydrothermal mineralization, Water Research, Vol. 39 (12), pp. 2543–2548 (2005).

Jiang, J.Q., Xu, Y.L., Quill, K., Simon, J., and Shettle, K., Laboratory Study of Boron removal by Mg/Al Double-Layered Hydroxides, Industrial and Engineering Chemistry Research, Vol. 46 (13), pp. 4577-4583 (2007).

Kabay, N., Sarp, S., Yuksel, M., Arar, Ö., and Bryjak, M., Removal of boron from seawater by selective ion exchange resins, Reactive & Functional Polymers, Vol. 67 (12 SPEC.ISS.), pp. 1643-1650 (2007).

Karahan, S., Yurdakoç, M., Seki, Y., and Yurdakoç, K., Removal of boron from aqueous solution by clays and modified clays, Journal of Colloid and Interface Science, Vol. 293 (1), pp. 36-42 (2006).

Karakaplan, M., Tural, S., Tural, B., Turgut, Y., and Hoşgören, H., The solvent extraction of boron with synthesized aliphatic 1,3-diols: Stripping and extraction behavior of boron by 2,2,5-trimethyl-1,3-hexanediol, Solvent Extraction and Ion Exchange, Vol. 22 (6), pp. 897-911 (2004).

Kavak, D., Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design, Journal of Hazardous Materials, Vol. 163 (1), pp. 308-314 (2008).

Kitano, Y., Okumura, M., and Idogaki, M., Coprecipitation of borate-boron with calcium carbonate, Geochemical Journal, Vol. 12, pp. 183-189 (1978).

Kluczka, J., Ciba, J., Trojanowska, J., Zolotajkin, M., Turek, M., and Dydo, P., Removal of Boron Dissolved in Water, Environmental Progress, Vol. 26 (1), pp. 71-77 (2007).

Lide, D.R., CRC-Handbook of Chemistry and Physics, 87th edition, Taylor and Francis Group, LLC, U.S. pp. (12-27)-(12-28) (2006).

Liu, R., Ma, W., Jia, C., Wang, L., and Li, H.Y., Effect of pH on biosorption of boron onto cotton cellulose, Desalination, Vol. 207 (1-3), pp. 257-267 (2007).

Lv, L., Defluoridation of Drinking Water by Calcined MgAl-CO3 Layered Double Hydroxides, Desalination, Vol. 208 (1-3), pp. 125-133 (2007).

Lv, L., He, J., Wei, M., Evans, D.G., and Duan, X., Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides, Journal of Hazardous Materials, Vol. 133 (1-3), pp. 119-128 (2006).

Lv, L., He, J., Wei, M., Evans, D.G., and Zhao, Z., Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: Kinetic and equilibrium studies, Water Research, Vol. 41 (7), pp. 1534-1542 (2007).

Mandal, S. and Mayadevi, S., Adsorption of Fluoride Ions by Zn-Al Layered Double Hydroxides, Applied Clay Science, Vol. 40 (1-4), pp. 54-62 (2008).

Marchi, A.J. and Apesteguía, C.R., Impregnation-induced memory effect of thermally activated layered double hydroxides, Applied Clay Science, Vol. 13 (1), pp. 35–48 (1998).

Mastromatteo, E. and Sullivan, F., Summary: International Symposium on Health Effects of Boron and Its Compounds, Environmental Health Perspectives, Vol. 102, Supplement 7, pp. 139-141 (1994).

Metcalf and Eddy, Wastewater Engineering - Treatment and Reuse, 4th edition, Mc Graw Hill: Singapore (2004).

Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Guého, C., Besse, J.P., and Morel, J.P., Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange, Journal of Materials Chemistry, Vol. 13 (10), pp. 2582–2585 (2003).

Nable, R.O., Bañuelos, G.S., and Paull, J.G., Boron toxicity, Plant and Soil, Vol. 193 (1-2), pp. 181-198 (1997).

Nadav, N., Boron removal from seawater reverse osmosis permeate utilizing selective ion exchange resin, Desalination, Vol. 124 (1-3), pp. 131-135 (1999).

Nakayama, H., Fukagawa, N., Nishiura, Y., Yasuda, T., Ito, T., and Mihayashi, K., Development of Low-Retardation TAC film for Protection Films of LCD’s Polarizer, Journal of Photopolymer Science and Technology, Vol. 19 (2), pp. 169-173 (2006).

Ogawa, M. and Asai, S., Hydrothermal synthesis of layered double hydroxide–deoxycholate intercalation compounds, Chemistry of Materials, Vol. 12 (11), pp. 3253–3255 (2000).

Olanrewaju, J., Newalkar, B.L., Mancino, C., and Komarneni, S., Simplified synthesis of nitrate form of layered double hydroxide, Materials Letters, Vol. 45 (6), pp. 307–310 (2000).

Öztürk, N. and Kavak, D., Boron removal from Aqueous Solution by Adsorption on Waste Sepiolite and Activated Waste Sepiolite Using Full Factorial Design, Adsorption, Vol. 10 (3), pp. 245-257 (2004).

Öztürk, N. and Kavak, D., Adsorption of boron from aqueous solutions using fly ash: Batch and Column studies, Journal of Hazardous Material, Vol. 127 (1-3), pp. 81-88 (2005).

Parker, L.M., Milestone, N.B., and Newman, R.H., The Use of Hydrotalcite as an Anion Absorbent, Industrial and Engineering Chemistry Research, Vol. 34 (4), pp. 1196-1202 (1995).

Peak, D., Luther, G.W.III, and Sparks, D.L., ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide, Geochimica et Cosmochimica Acta, Vol. 67 (14), pp. 2551-2560 (2003).

Polat, H., Vengosh, A., Pankratov, I., and Polat, M., A new methodology for removal of boron from water by coal and fly ash, Desalination, Vol. 164 (2), pp. 173-188 (2004).

Prasanna, S.V., Rao, R.A.P., and Kamath, P.V., Layered double hydroxides as potential chromate scavengers, Journal of Colloid and Interface Science, Vol. 304 (2), pp. 292–299 (2006).

Prats, D., Chillon-Arias, M.F., and Rodriguez-Pastor, M., Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis, Desalination, Vol. 128 (3), pp. 269-273 (2000).

R.O.C. Taiwan Environmental Law Library, http://law.epa.gov.tw/en/laws/480770486. html (2007)

Sayiner, G., Kandermirli, F., and Dimoglo, A., Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes, Desalination, Vol. 230 (1-3), pp. 205-212 (2008).

Seida, Y. and Nakano, Y., Removal of phosphate by layered double hydroxides containing iron, Water Research, Vol. 36 (5), pp. 1306-1312 (2002).

Seki, Y., Seyhan, S., and Yurdakoc, M., Removal of boron from aqueous solution by adsorption on Al2O3 based material using full factorial design, Journal of Hazardous Material, Vol. 138 (1), pp. 60-66 (2006).

Simonnot, M.O., Castel, C., Nicolaï, M., Rosin, C., Sardin, M., and Jauffret, H., Boron removal from drinking water with a boron selective resin: Is the treatment really selective?, Water Research, Vol. 34 (1), pp. 109-116 (2000).

Tan, I.A.W., Ahmad, A.L., and Hameed, B.H., Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, Journal of Hazardous Materials, Vol. 164 (2-3), pp. 473–482 (2009).

Third Drinking Water Contaminant Candidate List, Fact Sheet EPA 815-F-08-001, U.S. Environmental Protection Agency: Washington DC, http://www.epa.gov/ safewater/ccl/pdfs/fs_ccl3.pdf (2008).

Tongamp, W., Zhang, Q., and Saito, F., Mechanochemical route for synthesizing nitrate form of layered double hydroxide, Powder Technology, Vol. 185 (1), pp. 43–48 (2008).

Wang, Y. and Gao, H., Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs), Journal of Colloid and Interface Science, Vol. 301 (1), pp. 19-26 (2006).

Wang, X.S., Tang, Y.P., and Tao, S.R., Kinetics, equilibrium and thermodynamic study on removal of Cr (VI) from aqueous solutions using low-cost adsorbent Alligator weed, Chemical Engineering Journal, Vol. 148 (2-3), pp. 217–225 (2009).
Xu, Y.L. and Jiang, J.Q., Technology for Boron Removal, Industrial and Engineering Chemistry Research, Vol. 47 (1), pp. 16-24 (2008).

Yazicigil, Z. and Oztekin, Y., Boron removal by electrodialysis with anion-exchange membranes, Desalination, Vol. 190 (1-3), pp. 71-78 (2006).

You, Y.W., Vance, G.F., and Zhao, H.T., Selenium adsorption on Mg–Al and Zn–Al layered double hydroxides, Applied Clay Science, Vol. 20 (1-2), pp. 13–25 (2001).

Zagorodni, A.A., Ion Exchange Materials - Properties and Applications, Elsevier: Amsterdam (2007).

http://www.optimax.com.tw/English/02.htm

http://www.optimax.com.tw/English /0202.htm

QR CODE