簡易檢索 / 詳目顯示

研究生: 王思懿
Szu-yi Wang
論文名稱: 利用電漿聚合含胺基與乙二醇衍生物之單體對聚乙烯濾膜進行表面改質並探討其過濾表現
Surface modifications of polyethylene membranes with amine and ethylene glycol containing monomers by plasma polymerization for the applications in filtration
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 陳克紹
Ko-shao Chen
魏大欽
Ta-chin Wei
蔡偉博
Wei-bor Tsai
溫國蘭
Kuo-lan Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 表面改質電漿聚合聚乙烯親水性過濾丙胺丙烯胺乙烯氧化乙烯醚二乙烯氧化乙烯醚
外文關鍵詞: surface modification, plasma polymerization, polyethylene, hydrophilic, filtration, propylamine, allylamine, ethylene oxide vinyl ether, diethylene oxide vinyl ether
相關次數: 點閱:223下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用掃流式過濾系統,分離中國倉鼠卵巢細胞 (Chinese hamster ovary cell, CHO cell) 細胞液中的細胞與蛋白質。由於進行細胞培養時,會於細胞液中加入如血清蛋白等CHO細胞所需的養分,同時細胞生長時會產生代謝物以及蛋白質,因此為達到分離細胞液中細胞以及蛋白質的目的,必須利用過濾的方法。本論文的過濾實驗選用聚乙烯 (polyethylene, PE) 濾膜,孔洞大小約為7~12 μm,CHO細胞大小約20 μm,因此過濾時細胞可被阻擋,而過濾之濾液為細胞所產生的蛋白質與細胞培養液的養分。過濾膜的效果以及持久性取決於與其物理化學性質,由於本研究所使用的PE膜較為疏水,容易造成蛋白質的沾黏而形成濾餅,降低過濾通量,因此本論文提出改質PE膜為較親水的性質,期能抵抗蛋白質的沾黏,降低濾餅的形成,增加過濾通量,並且有效分離代謝產物,將可應用於生物技術以及製藥產業之分離程序。
本論文所採用的改質方式是利用親水性單體,含胺基之丙胺 (propylamine)、丙烯胺 (allylamine) 與乙二醇衍生物包括乙烯氧化乙烯醚 (ethylene oxide vinyl ether, EO1V) 以及二乙烯氧化乙烯醚 (diethylene oxide vinyl ether, EO2V),以連續式電漿沉積高分子薄膜,並進行表面分析,以及過濾實驗。分析結果發現,四種不同單體電漿沉積後的PE表面,FTIR與ESCA分析結果,皆確定四種親水性單體經電漿聚合成功沉積於基材表面;以水的接觸角測試,PE濾膜表面親水性皆有所提升;表面型態則是藉掃瞄式電子顯微鏡 (SEM) 的觀察,PE表面有顆粒狀與膜狀的形成;原子力顯微鏡 (AFM) 之結果顯示表面粗糙度皆增加。由過濾結果發現,經電漿聚合丙胺、丙烯胺、EO1V與EO2V之高分子的PE濾膜,過濾量分別提高25 %、37 %、43 %與45 %,且濾膜經過去離子水與氫氧化鈉溶液清洗後回復率皆可達80 %與90 %以上,顯示經過電漿聚合親水性單體後,可以有效延緩通量的下降、並提升過濾量,並且濾膜的回復率高,可再利用性加。


This study used crossed-flow filtration system to separate proteins from the Chinese hamster ovary cell (CHO cell) solution. While cultivated cell, usually add some medium like serum protein causing cell generated metabolite and protein, therefore we had to separate protein by filtration. In this work, the size of CHO cell was about 20 μm and so that we chosen PE membrane which has pore size of about 7~12 μm for filtration experiment. Due to the surface hydrophobicity of PE membrane, the protein adhesion usually resulted in blockage of filtration membrane and reduced filtration flux.
This work modified the surfaces of PE membranes by continuous plasma polymerization of hydrophilic monomers including propylamine, allylamine, ethylene oxide vinyl ether (EO1V), and diethylene oxide vinyl ether (EO2V). The deposition of plasma polymers were confirmed by surface characterizations by water contact angle measurements, FTIR, ESCA, SEM analyses and filtration tests. The results showed that the surface hydrophilicity and roughness increased when the PE surfaces were deposited with plasma polymer thin films. For the results of filtration tests, the filtration flux increased 25 %, 37 %, 43 % and 45 % on the modified PE membranes coated with propylamine, allylamine, EO1V and EO2V respectively. Moreover, the flux was recovered to 80 % and 90 % after washing with DI water and NaOH solution, indicating good reusability for the modified membranes.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 1 第二章 文獻回顧 4 2.1 膜過濾 6 2.1.1微過濾 (microfiltration) 膜 7 2.2 聚乙烯 (polyethylene, PE) 8 2.3 濾膜的改質方法 9 2.4 電漿原理 11 2.4.1 電漿聚合 12 2.4.2 電漿聚合理論 12 2.4.3 電漿聚合參數 14 2.5 電漿聚合含胺基與乙二醇衍生物之單體 16 2.6 滲透通量與通量回復率的計算 17 第三章 研究方法與儀器原理 28 3.1 研究目的 28 3.2 實驗材料與儀器 28 3.2.1 過濾實驗材料 28 3.2.2 電漿聚合單體 28 3.2.3 靜態蛋白質吸附藥品 29 3.3 實驗儀器 29 3.4 實驗方法 29 3.4.1 電漿系統 29 3.4.2 單體流量校正 31 3.4.2 電漿聚合薄膜 33 3.4.3 物理性質分析 34 3.4.4 化學性質分析 34 3.4.5 靜態蛋白質沾黏測試 (BSA吸附) 34 3.4.6 動態蛋白質沾黏測試 (過濾實驗) 35 3.5 儀器原理 36 3.5.1 接觸角量測 36 3.5.2 掃描式電子顯微鏡 37 3.5.3 原子力顯微鏡 37 3.5.4 表面界達電位 38 3.5.5 薄膜界面電位分析儀 (Electro-kinetic analyzer, EKA) 39 3.5.6 傅立葉紅外線光譜儀 39 3.5.7 電子能譜化學分析儀 40 3.5.8 統計學分析 (statistical analysis) 41 第四章 結果與討論 42 4.1 電漿聚合含胺基之單體 42 4.1.1 電漿聚合丙胺與丙烯胺於玻璃上之膜厚度 42 4.1.2 AFM分析電漿聚合丙胺與丙烯胺於矽晶片表面形態與粗糙度 43 4.1.3 SEM分析電漿聚合丙胺與丙烯胺於PE濾膜表面及截面形態 47 4.1.4 電漿聚合丙胺與丙烯胺於PE濾膜表面濕潤性 52 4.1.5 電漿聚合丙胺與丙烯胺於PE濾膜表面介達電位 53 4.1.6 FTIR分析電漿聚合丙胺與丙烯胺於PE濾膜表面化學官能基 54 4.1.7 ESCA分析電漿聚合丙胺與丙烯胺於PE濾膜表面化學組成 56 4.1.8 電漿聚合丙胺於PE濾膜的過濾行為 60 4.1.9 電漿聚合含胺基之單體於PE濾膜之通量回復率測試 62 4.1.10 利用SEM分析電漿聚合丙胺與丙烯胺於PE濾膜過濾後表面及截面形態 63 4.1.11 電漿聚合丙胺與丙烯胺於PE濾膜靜態蛋白質沾黏 69 4.2 電漿聚合含乙二醇衍生物之單體 70 4.2.1 電漿聚合EO1V與EO2V於玻璃上之膜厚度 70 4.2.2 AFM分析電漿聚合EO1V與EO2V於矽晶片表面形態與粗糙度 71 4.2.3 SEM分析電漿聚合EO1V與EO2V於PE濾膜表面形態 74 4.2.4 電漿聚合EO1V與EO2V於玻璃之表面濕潤性 77 4.2.5 電漿聚合EO1V與EO2V於PE濾膜表面介達電位 77 4.2.6 FTIR分析電漿聚合EO1V與EO2V於PE濾膜表面官能基 79 4.2.7 ESCA分析電漿聚合EO1V與EO2V於PE濾膜表面化學組成 80 4.2.8 電漿聚合EO1V與EO2V於PE濾膜的過濾行為 84 4.2.9 電漿聚合乙二醇衍生物之單體於PE濾膜之通量回復率測試 86 4.2.10 SEM分析電漿聚合EO1V與EO2V於PE濾膜過濾後截面形態 87 4.2.11 電漿聚合EO1V與EO2V於PE濾膜靜態蛋白質沾黏 90 第五章 結論 92 5.1 電漿聚合含胺基與乙二醇衍生物之單體表面分析 92 5.2 電漿聚合含胺基與乙二醇衍生物之單體抗沾黏測試 93 第六章 參考文獻 95

[1] Zhu L-P, Jiang J-H, Zhu B-K, Xu Y-Y. Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer. Colloids and Surfaces B: Biointerfaces. 2011;86:111-8.
[2] Jiang J-H, Zhu L-P, Li X-L, Xu Y-Y, Zhu B-K. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science. 2010;364:194-202.
[3] Al-Obeidani SKS, Al-Hinai H, Goosen MFA, Sablani S, Taniguchi Y, Okamura H. Chemical cleaning of oil contaminated polyethylene hollow fiber microfiltration membranes. Journal of Membrane Science. 2008;307:299-308.
[4] Ihm D, Noh J, Kim J. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. Journal of Power Sources. 2002;109:388-93.
[5] Xu T, Fu R, Yan L. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. Journal of Colloid and Interface Science. 2003;262:342-50.
[6] Zhao Y-H, Zhu B-K, Kong L, Xu Y-Y. Improving Hydrophilicity and Protein Resistance of Poly(vinylidene fluoride) Membranes by Blending with Amphiphilic Hyperbranched-Star Polymer. Langmuir. 2007;23:5779-86.
[7] Chang Y, Ko C-Y, Shih Y-J, Quémener D, Deratani A, Wei T-C, Wang D-M, Lai J-Y. Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science. 2009;345:160-9.
[8] Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K-J, Motornov M, Usov D, Tokarev I, Stamm M. Synthesis of Adaptive Polymer Brushes via “Grafting To” Approach from Melt. Langmuir. 2002;18:289-96.
[9] Wang P, Tan KL, Kang ET, Neoh KG. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science. 2002;195:103-14.
[10] Zhang F, Kang ET, Neoh KG, Wang P, Tan KL. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials. 2001;22:1541-8.
[11] Liu Z-M, Xu Z-K, Wan L-S, Wu J, Ulbricht M. Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science. 2005;249:21-31.
[12] Liu F, Du C-H, Zhu B-K, Xu Y-Y. Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer. 2007;48:2910-8.
[13] Zou L, Vidalis I, Steele D, Michelmore A, Low SP, Verberk JQJC. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science. 2011;369:420-8.
[14] Brétagnol F, Lejeune M, Papadopoulou-Bouraoui A, Hasiwa M, Rauscher H, Ceccone G, Colpo P, Rossi F. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomaterialia. 2006;2:165-72.
[15] Wu YJ, Timmons RB, Jen JS, Molock FE. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer. Colloids and Surfaces B: Biointerfaces. 2000;18:235-48.
[16] Shen M, Bell AT, American Chemical Society. Division of Polymer Chemistry. Plasma polymerization : based on a symposium sponsored by the ACS Division of Polymer Chemistry at the 176th meeting of the American Chemical Society, Miami Beach, Florida, September 15-16, 1978. Washington: American Chemical Society; 1979.
[17] Johnston EE, Bryers JD, Ratner BD. Plasma Deposition and Surface Characterization of Oligoglyme, Dioxane, and Crown Ether Nonfouling Films. Langmuir. 2004;21:870-81.
[18] Wang X, Grundmeier G. Surface analytical studies of Ar-plasma etching of thin heptadecafluoro-1-decene plasma polymer films. Applied Surface Science. 2006;252:8331-6.
[19] Liu S, Vareiro MMLM, Fraser S, Jenkins ATA. Control of Attachment of Bovine Serum Albumin to Pulse Plasma-Polymerized Maleic Anhydride by Variation of Pulse Conditions. Langmuir. 2005;21:8572-5.
[20] Yu H-Y, Xie Y-J, Hu M-X, Wang J-L, Wang S-Y, Xu Z-K. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. Journal of Membrane Science. 2005;254:219-27.
[21] van Reis R, Leonard LC, Hsu CC, Builder SE. Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnology and Bioengineering. 1991;38:413-22.
[22] Deng B, Yu M, Yang X, Zhang B, Li L, Xie L, Li J, Lu X. Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization. Journal of Membrane Science. 2010;350:252-8.
[23] Yan M-G, Liu L-Q, Tang Z-Q, Huang L, Li W, Zhou J, Gu J-S, Wei X-W, Yu H-Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal. 2008;145:218-24.
[24] Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science. 2009;342:97-104.
[25] Robinson S, Williams PA. Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone. Langmuir. 2002;18:8743-8.
[26] Chen Y, Deng Q, Xiao J, Nie H, Wu L, Zhou W, Huang B. Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties. Polymer. 2007;48:7604-13.
[27] Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science. 2009;255:7455-61.
[28] Song L. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science. 1998;139:183-200.
[29] Mujumdar AS. Filters and Filtration Handbook. Drying Technology. 1993;11:1911-2.
[30] Belfort G, Davis RH, Zydney AL. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. Journal of Membrane Science. 1994;96:1-58.
[31] Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress. 2003;22:46-56.
[32] Lehocký M, Drnovská H, Lapčı́ková B, Barros-Timmons AM, Trindade T, Zembala M, Lapčı́k Jr Lr. Plasma surface modification of polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003;222:125-31.
[33] Hua X, Wroblewski BM, Jin Z, Wang L. The effect of cup inclination and wear on the contact mechanics and cement fixation for ultra high molecular weight polyethylene total hip replacements. Medical Engineering & Physics. 2012;34:318-25.
[34] Elyashevich GK, Olifirenko AS, Pimenov AV. Micro- and nanofiltration membranes on the base of porous polyethylene films. Desalination. 2005;184:273-9.
[35] Kwon S, Kim KJ, Kim H, Kundu PP, Kim TJ, Lee YK, Lee BH, Choe S. Tensile property and interfacial dewetting in the calcite filled HDPE, LDPE, and LLDPE composites. Polymer. 2002;43:6901-9.
[36] Sprang N, Theirich D, Engemann J. Plasma and ion beam surface treatment of polyethylene. Surface and Coatings Technology. 1995;74–75, Part 2:689-95.
[37] Nho YC, Kwon OH. Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film. Radiation Physics and Chemistry. 2003;66:299-307.
[38] Zhou J, Childs RF, Mika AM. Pore-filled nanofiltration membranes based on poly(2-acrylamido-2-methylpropanesulfonic acid) gels. Journal of Membrane Science. 2005;254:89-99.
[39] Hu M-X, Yang Q, Xu Z-K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. Journal of Membrane Science. 2006;285:196-205.
[40] Kaczmarek H, Chaberska H. AFM and XPS study of UV-irradiated poly(methyl methacrylate) films on glass and aluminum support. Applied Surface Science. 2009;255:6729-35.
[41] Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids and Surfaces B: Biointerfaces. 2010;81:20-6.
[42] Shi L-S, Wang L-Y, Wang Y-N. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. European Polymer Journal. 2006;42:1625-33.
[43] Yu H-Y, Tang Z-Q, Huang L, Cheng G, Li W, Zhou J, Yan M-G, Gu J-S, Wei X-W. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment. Water Research. 2008;42:4341-7.
[44] Kim Y, Kim K-J, Lee Y. Surface analysis of fluorine-containing thin films fabricated by various plasma polymerization methods. Surface and Coatings Technology. 2009;203:3129-35.
[45] Liu F, Zhu B-K, Xu Y-Y. Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Applied Surface Science. 2006;253:2096-101.
[46] Gancarz I, Poźniak G, Bryjak M. Modification of polysulfone membranes 1. CO2 plasma treatment. European Polymer Journal. 1999;35:1419-28.
[47] Gancarz I, Poźniak G, Bryjak M, Tylus W. Modification of polysulfone membranes 5. Effect of n-butylamine and allylamine plasma. European Polymer Journal. 2002;38:1937-46.
[48] Inagaki N. Plasma surface modification and plasma polymerization. Lancaster, Pa.: Technomic Pub. Co.; 1996.
[49] Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports. 2002;36:143-206.
[50] Tibbitt JM, Jensen R, Bell AT, Shen M. A Model for the Kinetics of Plasma Polymerization. Macromolecules. 1977;10:647-53.
[51] Kobayashi H, Bell AT, Shen M. Formation of an amorphous powder during the polymerization of ethylene in a radio-frequency discharge. Journal of Applied Polymer Science. 1973;17:885-92.
[52] Yasuda H, Hsu T. Some aspects of plasma polymerization investigated by pulsed R.F. discharge. Journal of Polymer Science: Polymer Chemistry Edition. 1977;15:81-97.
[53] Favia P, d’Agostino R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surface and Coatings Technology. 1998;98:1102-6.
[54] Sang Ho S, Campbell SA. The effect of composition on surface morphology, formation mechanism and pinhole generation of cosputtered ytterbium silicide. Thin Solid Films. 2009;517:6841-6.
[55] Shen M, Bell Alexis T. A Review of Recent Advances in Plasma Polymerization. Plasma Polymerization: AMERICAN CHEMICAL SOCIETY; 1979. p. 1-33.
[56] Ruaan R-C, Wu T-H, Chen S-H, Lai J-Y. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma. Journal of Membrane Science. 1998;138:213-20.
[57] Poźniak G, Gancarz I, Bryjak M, Tylus W. N-butylamine plasma modifying ultrafiltration polysulfone membranes. Desalination. 2002;146:293-9.
[58] Chen Q, Dai L, Gao M, Huang S, Mau A. Plasma Activation of Carbon Nanotubes for Chemical Modification. The Journal of Physical Chemistry B. 2000;105:618-22.
[59] Kim J, Park H, Jung D, Kim S. Protein immobilization on plasma-polymerized ethylenediamine-coated glass slides. Analytical Biochemistry. 2003;313:41-5.
[60] Fally F, Doneux C, Riga J, Verbist JJ. Quantification of the functional groups present at the surface of plasma polymers deposited from propylamine, allylamine, and propargylamine. Journal of Applied Polymer Science. 1995;56:597-614.
[61] Choukourov A, Biederman H, Slavinska D, Hanley L, Grinevich A, Boldyryeva H, Mackova A. Mechanistic Studies of Plasma Polymerization of Allylamine. The Journal of Physical Chemistry B. 2005;109:23086-95.
[62] Kang MS, Chun B, Kim SS. Surface modification of polypropylene membrane by low-temperature plasma treatment. Journal of Applied Polymer Science. 2001;81:1555-66.
[63] Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1993;1146:157-68.
[64] Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214:1-38.
[65] Dreborg S, Akerblom EB. Immunotherapy with monomethoxypolyethylene glycol modified allergens. Critical reviews in therapeutic drug carrier systems. 1990;6:315-65.
[66] Li B, Liu W, Jiang Z, Dong X, Wang B, Zhong Y. Ultrathin and Stable Active Layer of Dense Composite Membrane Enabled by Poly(dopamine). Langmuir. 2009;25:7368-74.
[67] Persson A, Jönsson A-S, Zacchi G. Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration. Journal of Membrane Science. 2003;223:11-21.
[68] Dong C, He G, Li H, Zhao R, Han Y, Deng Y. Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. Journal of Membrane Science. 2012;387–388:40-7.
[69] Narong P, James AE. Effect of the ζ-potential on the micro/ultra-filtration of yeast suspensions using ceramic membranes. Separation and Purification Technology. 2006;49:149-56.
[70] Rahimpour A, Madaeni SS, Mansourpanah Y. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science. 2010;364:380-8.
[71] Mu C, Su Y, Sun M, Chen W, Jiang Z. Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. Journal of Membrane Science. 2010;350:293-300.
[72] Elimelech M, Chen WH, Waypa JJ. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination. 1994;95:269-86.
[73] Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces. 2006;50:1-8.
[74] Möckel D, Staude E, Dal-Cin M, Darcovich K, Guiver M. Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes. Journal of Membrane Science. 1998;145:211-22.
[75] Mangindaan D, Kuo W-H, Chang C-C, Wang S-L, Liu H-C, Wang M-J. Plasma polymerization of amine-containing thin films and the studies on the deposition kinetics. Surface and Coatings Technology. 2011;206:1299-1360
[76] Tušek L, Nitschke M, Werner C, Stana-Kleinschek K, Ribitsch V. Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001;195:81-95.

無法下載圖示 全文公開日期 2017/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE