簡易檢索 / 詳目顯示

研究生: 何昆哲
Kun-Che Ho
論文名稱: 基於金鷹演算法之三階混合全橋LLC諧振轉換器效率最佳化
Efficiency Optimization of Three-Level Full-Bridge Mixed LLC Resonant Converter Based on Golden Eagle Algorithm
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
劉添華
Tian-Hua Liu
王順忠
Shun-Chung Wang
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 電動車電池充電三階全橋LLC諧振轉換器金鷹演算法綜合效率最佳化
外文關鍵詞: Electric Vehicles (EV), Battery Charging, Three-Level Full-Bridge LLC Resonant Converter, Golden Eagle Optimizer, Overall Efficiency Optimization
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今環保意識抬頭,電動車逐漸成為趨勢,用於車用電池充電器等應用場合之功率轉換器需具備大輸出功率、寬輸出電壓以及高功率密度等特點。因此本論文實作一台三階混合全橋LLC諧振轉換器以符合上述應用需求。本論文首先提出一固定工作頻率,調節輔助開關責任週期之控制法,降低控制難度,使電路能工作於二階模式與三階模式,並根據輸出電壓與負載情況進行平滑切換,實現寬輸出電壓與高效率之目標。此外,由於目前文獻中提出之效率最佳化研究皆僅考慮單一負載情境,而轉換器應用於電池充電應用場合時,其負載會隨充電過程而持續改變,針對此一需求,本論文提出一結合LLC諧振轉換器之工作區域分析、損耗分析及金鷹演算法之效率最佳化設計方法以求解最佳諧振槽設計參數,進而實現最佳綜合效率。
    本研究最後實際完成一台1250W,輸入電壓500V,輸出電壓360-500V,最大輸出電流2.5A的三階混合全橋LLC諧振轉換器,針對120串ICR-18650M之電池組規格,驗證本研究所提出的控制法與金鷹演算法求得之最佳諧振槽參數的正確性與可行性。由實驗結果可知當輸出電壓500V且輸出80%負載時,所提電路可達最高效率97.3%,且針對實際定電流-定電壓充電法各負載之時間比重進行量測可得綜合效率為95.7%。


    As environmental awareness is on the rise, electric vehicles (EV) have rapidly grown in popularity nowadays. An EV charging converter requires large power, wide output voltage range and high power density. To achieve the above requirements, a three-level full-bridge LLC resonant converter is developed in this dissertation. A simple constant frequency modulation method is firstly proposed which adjusts the duty cycles of the auxiliary switches to achieve the voltage control in two-level or three-level mode, the complexity of this presented control can be greatly reduced. Besides, unlike the previous studies only consider a single load condition, this paper takes the multiple charging scenario into account and perform optimization. However, when the converter is used in battery charging application, its load will continue to change with the charging process. To address this issue, multiple load scenarios are considered during the battery charging process in this study. With the investigation on operating regions, losses analysis and golden eagle optimizer, the optimized design parameters and highest overall efficiency are obtained. A 1250W three-level full-bridge LLC resonant converter with 500V input and 360-500V/2.5A output is realized. A battery module consisting of 120 ICR-18650M batteries in series is used to validate the proposed control method and verify the feasibility and accuracy of the parameters collected from golden eagle optimizer. From the experimental results, when the load is at 80% and 500V, the proposed circuit can reach a maximum efficiency of 97.3%. The overall efficiency can be obtained by measuring the time proportion of each load in the actual constant current- constant voltage charging method as 95.7%.

    目錄 摘要 I Abstract II 誌謝 III 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 文獻探討 5 1.4 論文大綱 8 第二章 多階電源轉換器於電動車之應用 9 2.1 電動車充電系統架構 9 2.2 全橋串接式 10 2.3 電容中性點箝位式 11 2.4 二極體箝位式 12 2.5 三階全橋混合式 14 第三章 三階混合全橋LLC諧振轉換器架構與操作原理 15 3.1 三階混合全橋LLC諧振轉換器控制策略 15 3.2 二階模式分析 15 3.2.1 二階模式動作分析 16 3.2.2 二階模式增益探討 21 3.3 三階模式分析 23 3.3.1 三階模式動作分析 23 3.3.2 三階模式增益探討 29 第四章 金鷹演算法應用於諧振槽最佳化設計 31 4.1 全橋LLC諧振轉換器操作區域分析 31 4.1.1 全橋LLC諧振轉換器操作模式分類 31 4.1.2 參數正規化 32 4.1.3 低於諧振頻率之不連續導通模式 (電感性) 34 4.1.4 諧振頻率以上或以下的不連續導通模式 (電感性) 38 4.2 元件選用與損耗分析 39 4.2.1 功率開關選用與損耗分析 39 4.2.2 功率開關驅動器選用與損耗分析 43 4.2.3 變壓器損耗分析 46 4.2.4 輸出整流二極體損耗分析 47 4.3 效率最佳化結合金鷹演算法 48 4.3.1 金鷹演算法介紹 48 4.3.2 獵物選擇 49 4.3.3 攻擊(開發)行為 50 4.3.4 巡航(探勘)行為 50 4.3.5 更新金鷹位置 51 4.3.6 適應值與最佳化目標 52 第五章 硬體電路設計 54 5.1 定電流-定電壓充電法之負載使用情境 54 5.2 硬體電路實現說明 55 5.3 TI 28379D開發板之擴展板設計 56 5.4 Broadcom ACPL-344JT驅動板設計 58 5.5 電壓電流回授板設計 60 5.5.1 TI AMC1300B 電壓隔離放大器 60 5.5.2 LEM CKSR-15 電流感測器 61 第六章 實驗量測與結果分析 63 6.1 實驗環境與設備介紹 63 6.2 電路規格表 64 6.3 實測規劃表 65 6.4 實驗波形 66 第七章 結論與未來展望 73 7.1 結論 73 7.2 未來展望 74 參考文獻 75

    參考文獻
    [1] “Global EV Sales for 2021 H1,” EV-Volumes.
    [2] G. Harrison and C. Thiel, “An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe,” Technological Forecasting and Social Change, vol. 114, pp. 165-178, 2017. “The Global Electric Vehicle Market In 2022- Virta,” Virta Global.
    [3] A. S. Al-Ogaili, I. B. Aris, R. Verayiah, A. Ramasamy, M. Marsadek, N. A. Rahmat, Y. Hoon, A. Aljanad, and A. N. Al-Masri, “A Three-Level Universal Electric Vehicle Charger Based on Voltage-Oriented Control and Pulse-Width Modulation,” Energies, vol. 12, no. 12, p. 2375, 2019.
    [4] M. Yilmaz and P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151-2169, 2013.
    [5] F.Marra, G. Y. Yang, C. Træholt, E. Larsen, C. N. Rasmussen, and S. You, “Demand profile study of battery electric vehicle under different charging options,” 2012 IEEE Power and Energy SocietyGeneralMeeting, pp. 1-7, 2012.
    [6] S. Habib, M. M. Khan, K. Hashmi, M. Ali, and H. Tang, “ A comparative study of electric vehicles concerning charging infrastructure and power levels,” In 2017 International Conference on Frontiers of Information Technology (FIT), pp. 327-332, December 2017.
    [7] P. Harrop. “Electric vehicles go high voltage,” Nexgen Power Systems ,2019.
    [8] E. Johnson “Introduction to electric vehicle battery systems.,”2019.
    [9] Y. Lai and M. Yu, “Maximum Efficiency Point Tracking for Two-Stage Server Power Supply,” 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), pp. 1-5, 2019.
    [10] H. Park and J. Jung, “PWM and PFM Hybrid Control Method for LLC Resonant Converters in High Switching Frequency Operation,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 253-263, Jan. 2017.
    [11] Z. Liang, R. Guo, G. Wang and A. Huang, “A new wide input range high efficiency photovoltaic inverter,” 2010 IEEE Energy Conversion Congress and Exposition, pp. 2937-2943, 2010.
    [12] Z. Hu, Y. Qiu, L. Wang and Y. Liu, “An Interleaved LLC Resonant Converter Operating at Constant Switching Frequency”, IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2931-2943, June 2014.
    [13] Z. Hu, Y. Qiu, Y. Liu and P. C. Sen, “A Control Strategy and Design Method for Interleaved LLC Converters Operating at Variable Switching Frequency, ” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4426-4437, Aug. 2014.
    [14] I. Cho, Y. Kim and G. Moon, “A Half-Bridge LLC Resonant Converter Adopting Boost PWM Control Scheme for Hold-Up State Operation,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 841-850, Feb. 2014.
    [15] M. I. Shahzad, S. Iqbal, and S. Taib, “A Wide Output Range HB-2LLC Resonant Converter with Hybrid Rectifier for PEV Battery Charging,” IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 520–531, Jun. 2017.
    [16] H. Wang and Z. Li, “A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3791-3801, May 2018.
    [17] H. Wu, Y. Li, and Y. Xing, “LLC Resonant Converter with Semiactive Variable-Structure Rectifier (SA-VSR) for Wide Output Voltage Range Application,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3389–3394, May 2016.
    [18] Y. Gu, L. Hang, and Z. Lu, “A Flexible Converter with Two Selectable Topologies,” IEEE Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4854-4861, Dec. 2009.
    [19] J.R. Pinheiro and I. Barbi, “The three-level ZVS PWM converter-a new concept in high voltage DC-to-DC conversion,’’ in Proc. The International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, Nov. 1992, pp. 173-178.
    [20] E. Deschamps and I. Barbi, “A New DC-to-DC ZVS PWM Converter for High Input Voltage Applications,’’ in Proc. PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, pp. 967-972, May. 1998.
    [21] E. Deschamps and I. Barbi, “A Flying-Capacitor ZVS PWM 1.5 kW DC-to-DC Converter with Half of the Input Voltage Across the Switches,’’ IEEE Transactions on Power Electronics, vol. 15, no. 5, pp.855-860, Sept. 2000.
    [22] Francisco Canales, Peter M. Barbosa, José M. Burdio, and Fred C. Lee, “A Zero Voltage Switching Three-Level DC/DC Converter,” 22th International Telecommunications Energy Conference(INTELEC), Phoenix, AZ, USA, vol. 27, no. 3, pp.512-517, Sept. 2000.
    [23] Byeong-Mun Song, R. McDowell, and A. Bushnell, “A Three-Level DC-DC Converter with Wide-Input Voltage Operations for Ship-Electric-Power-Distribution Systems,’’ 14th IEEE International Pulsed Power Conference, Dallas, TX, pp. 1309-1312, June. 2003.
    [24] L. Shi et al., "Voltage Autobalance Characteristic Analysis and Clamp Circuits Design of Hybrid-Clamped Three-Level LLC Converter,"IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 6026-6035, Nov.-Dec. 2019.
    [25] H. Haga and F. Kurokawa, "Modulation Method of a Full-Bridge Three-Level LLC Resonant Converter for Battery Charger of Electrical Vehicles," IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2498-2507, April 2017.
    [26] H. Haga and F. Kurokawa, "Dynamic analysis of the three-level LLC resonant converter for a rectifier in HVDC distribution system," 2015 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1-6, 2015.
    [27] H. Haga and F. Kurokawa, "A novel modulation method of the full bridge three-level LLC resonant converter for battery charger of electrical vehicles," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5498-5504, 2015.
    [28] X. Ruan, L. Zhou, and Y. Yan, “Soft-switching PWM three-level converters,” IEEE Transactions on Power Electronics, vol. 16, no. 5, pp. 612-622, Sep. 2001.
    [29] E. Agostini and I. Barbi, “Three-phase three-level PWM DC-DC converter,” IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 1847-1856, Jul. 2011.
    [30] Y. Gu, Z. Lu, L. Hang, Z. Qian, and G. Huang, “Three-level LLC series resonant DC/DC converter,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 781-789, Jul. 2005.
    [31] I. Lee and G. Moon, “Analysis and design of a three-level LLC series resonant converter for high- and wide-input-voltage applications,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2966-2979, Jun. 2012.
    [32] K. Jin and X. Ruan, “Hybrid full-bridge three-level LLC resonant converter-A novel DC-DC converter suitable for fuel cell power system,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1492-1503, Oct. 2006.
    [33] C. Francisco, L. T. Ho, and A. Daniel, “Novel modulation method of a three-level isolated full-bridge LLC resonant DC-DC converter for wide output voltage application,” in Proc. Power Electron. Motion Control Conf, pp. DS2b.11-1-DS2b.11-7, 2012.
    [34] C.Wei, G. Yilei, and L. Zhengyu, “A novel three level full bridge resonant Dc-Dc converter suitable for high power wide range input applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 373-379, 2007.
    [35] K. Jin and X. Ruan, “Hybrid Full-Bridge Three-Level LLC Resonant Converter—A Novel DC-DC Converter Suitable for Fuel-Cell Power System," IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1492-1503, Oct. 2006.
    [36] Y. Guo, Z. Yang, Y. Yin and H. Cao, “Digital Control of Hybrid Full Bridge Three-level LLC Resonant Converter Based on SiC MOSFET,” 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pp. 1-6, 2018.
    [37] H. Haga and F. Kurokawa, “Modulation Method of a Full-Bridge Three-Level LLC Resonant Converter for Battery Charger of Electrical Vehicles,” IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2498-2507, April 2017.
    [38] H. Haga, H. Maruta and F. Kurokawa, “A comparative study of voltage gain tolerance in conventional and three-level LLC converters against circuit variation,” 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 153-157, 2016.
    [39] Bo Yang, F. C. Lee, A. J. Zhang and Guisong Huang, “LLC resonant converter for front end DC/DC conversion,” APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), vol. 2, pp. 1108-1112, 2002.
    [40] Y. Wei, Q. Luo, Z. Wang and H. A. Mantooth, “A Complete Step-by-Step Optimal Design for LLC Resonant Converter,” IEEE Transaction on Power Electronics, vol. 36, No. 4, pp. 3674-3691, 2021.
    [41] J. Liu, J. Zhang, T. Q. Zheng and J. Yang, “A Modified Gain Model and the Corresponding Design Method for an LLC Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 32, No. 9, pp. 6716-6727, 2017.
    [42] Z. Hu, L. Wang, H. Wang, Y. F. Liu and P. C. Sen, “An Accurate Design Algorithm for LLC Resonant Converters -PartⅠ,” IEEE Transaction on Power Electronics, Vol. 31, No. 8, pp. 5435-5447, 2016.
    [43] Z. Hu, L. Wang, Y. Qiu, Y. F. Liu and P. C. Sen, “An Accurate Design Algorithm for LLC Resonant Converters -PartⅡ,” IEEE Transaction on Power Electronics, Vol. 31, No. 8, pp. 5448-5460, 2016.
    [44] R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. -K. Ling and J. Lam, “Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3243-3256, July 2012.
    [45] F. Marra, G. Y. Yang, C. Træholt, E. Larsen, C. N. Rasmussen, and S. You, “Demand profile study of battery electric vehicle under different charging options,” In 2012 IEEE Power and Energy SocietyGeneralMeeting, pp. 1-7, 2012.
    [46] S. Habib,M. M. Khan, K. Hashmi,M. Ali, and H. Tang. “A comparative study of electric vehicles concerning charging infrastructure and power levels,” In 2017 International Conference on Frontiers of Information Technology (FIT), pp. 327-332, December 2017.
    [47] X. Gong, J. Rangaraju, “Taking charge of electric vehicles-both in the vehicle and on the grid,” Texas Instruments, Dallas, TX, USA, p.1-13, 2018.
    [48] V. F. Pires, J. Monteiro, A. Cordeiro, and J. F. Silva, “Integrated Battery Charger for Electric Vehicles Based on a Dual-Inverter Drive and a Three-Phase Current Rectifier,” Electronics, vol. 8, no. 10, pp. 1199, 2019.
    [49] R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. -K. Ling and J. Lam, “Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3243-3256, July 2012.
    [50] RENESAS, “ZVS Full-Bridge PWM Controller with Adjustable Synchronous Rectifier Control” 2016.
    [51] Wolfspeed, “C3M0120100K Silicon Carbide Power MOSFET,”Data Sheet,2020.
    [52] Infineon, “Mosfet power losses calculation using the data-sheet parameters,” 2006.
    [53] Texas Instruments, “Igbt & sic gate driver fundamentals,” 2019.
    [54] Broadcom, “ACPL-344JT Automotive 2.5A Gate-Drive Optocoupler with Integrated IGBT Desat Overcurrent Sensing, Miller-Current Clamping, and Under-Voltage Lockout Feedback,” Data Sheet, 2016.
    [55] J. F. Lazar and R. Martinelli, “Steady-State Analysis of the LLC Series Resonant Converter,” APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), pp. 728-735, 2001.
    [56] R. W. Erickson, “Introduction to power electronics, chapter-13 basic magnetics theory,” 2013.
    [57] Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A., & Taghizadeh-Yazdi, M. “Golden eagle optimizer: A nature-inspired metaheuristic algorithm,” Computer & Industrial Engineering vol. 152, pp. 107050, 2021.
    [58] H. Huang “Designing an LLC Resonant Half-Bridge Power Converter,” 2010 Texas Instruments Power Supply Design Seminar.
    [59] Molicel, “LITHIUM-ION RECHARGEABLE BATTERY MODEL ICR-18650M,” Data Sheet, 2018.
    [60] Texas Instruments, “AMC1300B-Q1 Precision, ±250-mV Input, Reinforced Isolated Amplifier,” Data Sheet, 2021.
    [61] LEM, “Current transducer CKSR series,” Data Sheet, 2015.
    [62] Texas Instruments, “Current-shunt delta-sigma modulator, 10MHz CLK, +/-250mV input, 16-bit resolution, ext ref option,” Data Sheet, 2008.
    [63] Texas Instruments, “TMS320F28379D LaunchPad Quick Start Guide,” 2017.
    [64] Broadcom, “AFBR-16xxZ and AFBR-26x4Z/25x9Z DC-50MBd Versatile Link Fiber Optic Transmitter and Receiver,” Data Sheet, 2016.
    [65] H. Huang “Designing an LLC Resonant Half-Bridge Power Converter,” 2010 Texas Instruments Power Supply Design Seminar.

    無法下載圖示 全文公開日期 2027/03/07 (校內網路)
    全文公開日期 2027/03/07 (校外網路)
    全文公開日期 2027/03/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE