簡易檢索 / 詳目顯示

研究生: 蔡嘉恩
Chia-En Tsai
論文名稱: 內建超高壓功率電晶體之升壓型轉換器控制晶片
A Control IC with On-Chip Ultra-High-Voltage Power MOSFET for Boost Converters
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
劉邦榮
Pang-Jung Liu
口試委員: 歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 超高壓功率電晶體交換式升壓型轉換器連續導通模式脈波寬度調變機制。
外文關鍵詞: Ultra-High-Vlotage Power MOSFETs, boost converter, continuous conduction mode, and pulse width modulation
相關次數: 點閱:174下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在針對超高壓功率電晶體實現於晶片內部,以減少外部元件數量。控制晶片應用於升壓型轉換器,操作於連續導通模式(CCM)。藉由脈波寬度調變機制(PWM)來改變開關訊號的責任週期大小以穩定升壓型轉換器的輸出電壓。整個控制電路以及超高壓功率電晶體皆整合於晶片內。
本控制晶片以台積電0.5 μm Ultra HV 2P3M 5V/20V/800V CMOS製程來實現,晶片面積為3.580×2.580 mm2。升壓型電路系統規格如下:輸入電壓範圍從200 V至300 V,輸出電壓為400 V,操作頻率為200 kHz,輸出負載電流變化為100 mA至500 mA。晶片功耗為4.6 mW,轉換效率可達92.5%。本論文成功將超高壓功率電晶體實現於晶片內部,以減少晶片外部元件數量。


The purpose of this thesis is to implement the Ultra-High-Voltage (UHV) Power MOSFETs into a chip to reduce the number of external components. The control IC is designed for boost converters and operates in continuous conduction mode (CCM). The control IC uses the pulse width modulation (PWM) by changing the duty cycle width of the switch signal to regulate the output voltage of the boost converter. The whole control circuit and the UHV Power MOSFETs are integrated into a chip.
The control IC is implemented with TSMC 0.5-μm UHV 2P3M 5V/20V/800V CMOS process, and its size is 3.580×2.580 mm2. The specifications of the boost converter are: the input voltage range is from 200 V to 300V, output voltage is 400 V, the operating frequency is 200 kHz, and the output load current is varied from 100 mA to 500 mA. The chip power consumption is 4.6 mW, and the system conversion efficiency is up to 92.5 percent. The thesis successfully implements the UHV Power MOSFETs into the chip, which reduces the number of external components.

摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究內容 2 1.3 論文概述 4 第二章 直流-直流轉換器 5 2.1 穩壓器介紹 5 2.1.1 線性穩壓器 5 2.1.2 電荷幫浦穩壓器 6 2.1.3 交換式穩壓器 7 2.2 穩壓性分析 10 2.2.1 轉換效率分析 10 2.2.2 電源調節率 11 2.2.3 負載調節率 12 2.2.4 暫態響應 13 第三章 交換式升壓型轉換器 16 3.1 工作原理 16 3.1.1 連續導通模式之穩壓分析 17 3.1.2 連續導通模式之邊界條件 21 3.1.3 輸出電壓漣波與元件之選擇 23 3.1.4 交換式升壓型轉換器規格設計 25 3.2 脈波寬度調變控制機制 27 3.3 緩啟動電路 29 第四章 電路設計與實現 31 4.1 系統架構介紹 31 4.2 各子電路設計 32 4.2.1 偏壓電路 32 4.2.2 運算轉導放大器 34 4.2.3 比較器 36 4.2.4 鋸齒波產生器 38 4.2.5 驅動器 41 4.2.6 超高壓功率電晶體 42 第五章 電路系統模擬結果 44 5.1 200 V輸入電路系統模擬結果 44 5.1.1 電源調節率 46 5.1.2 負載調節率 50 5.2 300 V輸入電路系統模擬結果 55 5.2.1 電源調節率 57 5.2.2 負載調節率 61 5.3 轉換效率分析 66 第六章 晶片佈局與量測 68 6.1 晶片佈局 68 6.2 量測考量 73 6.3 控制電路量測結果 76 6.4 200 V輸入電路系統量測結果 79 6.5 300 V輸入電路系統量測結果 82 6.6 轉換效率量測 85 6.7 問題探討與量測總結 86 第七章 結論與未來展望 90 7.1 結論 90 7.2 未來展望 90 參考文獻 92

[1] Chi Yat Leung, Philip K. T. Mok and Ka Nang Leung, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5=V CMOS Technologies” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005.
[2] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically Integrated Boost Converter Based on 0.5-μm CMOS Process,” IEEE J. Solid-State Circuits, vol. 20, no. 3, pp. 628–638, May 2005.
[3] J. C. Tsai, C. L. Chen,Y. T. Chen, C. L. Ni, C. Y. Chen, and K. H. Chen, “Perturbation On-time (POT) Technique in Power Factor Correction (PFC) Controller for Low Total Harmonic Distortion and High Power Factor,” IEEE Trans. Power Electron., Early Access Articles.
[4] G. A. Rincon-Mora, Analog IC Design with Low-Dropout Regualtors, New York: Oxford. 2009.
[5] J. F. Dickson, “On Chip High-Voltage Generation in MNOS Integranted Circuit Using An Improved Voltage Multiplied Technique,” IEEE J. Solid-State Circuits, vol. 1, pp. 374-378, Jun. 1976.。
[6] 林恩,具暫態響應改善之CMOS直流直流轉換器,國立台灣科技大學,電子工程研究所,碩士論文,台北,2011。
[7] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics:Converters, and Design,” New York:Wiley, 1995.
[8] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Norwell, MA: Kluwer Academic, 2001.
[9] 梁適安,交換式電源供應器之理論與實務設計,二版,全華科技圖書,2008。
[10] M. K. Kazimierczuk, Pulse-width Modulated DC-DC Power Converter, New York: Wiley. 2008.
[11] A. I. Pressman, “Switching power supply design,” Third Edition, McGraw-Hill, 2009.
[12] B. Razavi, Design of Analog CMOS Integrated Circuits,McGraw-Hill, 2001.
[13] Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, Jan. 2004.
[14] R. J. Baker, H. W. Li and D. E. Boyce “CMOS Circuit Design, Layout, and Simulation,” IEEE Press, John Wiley and Sons, Inc., 1998.
[15] P. E. Allen and D. R. Hoolberg, CMOS Analog Circuit Design, New York: Oxford. 2002.
[16] C. L. Chen, J. C. Tsai, Y. T. Chen, C. L. Ni, C. Y. Chen, and K. H. Chen, “800V Ultra-High-Voltage Start-up Mechanism for Preregulator in Power Factor Correction (PFC) Controller,” IEEE International Symp. on Circuits and Systems, Aug. 2011.
[17] 陳政佑,1伏啟動低功耗電流模式控制升壓型穩壓器積體電路,國立台灣科技大學,電子工程研究所,碩士論文,台北,2011。
[18] Poki Chen, Analog IC Layout, NTUST: Fall. 2008.
[19] K. Yao,and X. Ruan, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Control,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1856–1865, May. 2011.
[20] M. H. Huang, Y. C. Tsai, and K. H. Chen, “Energy-Recycling (ER) Technique for a Direct-Lit Intelligent Power Menagement Backlight Unit (BLU),” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2588–2598, Oct. 2010.
[21] P. Li, L. Xue, P. Hazucha, T. Karnik, and R. Bashirullah, “A Delay-Locked Loop Synchronization Scheme for High-Frequency Multiphase Hysteretic DC-DC Converters,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3131–3145, Nov. 2009.
[22] Yuan Yen Mai and Philip K. T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 55, no. 8, August 2008.
[23] Xiaohua Fan, Chinmaya Mishra, and Edgar Sánchez, ”Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers,” IEEE J. Solid-State Circuits, vol. 40, no. 3, Mar. 2005.

無法下載圖示 全文公開日期 2017/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE