簡易檢索 / 詳目顯示

研究生: 廖志強
Chih-Chiang Liao
論文名稱: 在Wi-Fi P2P 連結上之自適性節能機制
An Adaptive Power Saving Mechanism for Wi-Fi P2P Connections
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 蕭旭君
Hsu-Chun Hsiao
黃俊穎
Chun-Ying Huang
查士朝
Shi-Cho Cha
游家牧
Chia-Mu Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 34
中文關鍵詞: Wi-Fi P2P節能Wi-Fi P2P電源管理Wi-Fi P2P模式Wi-Fi P2P GO電源控制
外文關鍵詞: Wi-Fi P2P Energy Saving, Wi-Fi P2P Power Control, Wi-Fi P2P Mode, P2P GO Power Control
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從WFA 組織提出了Wi-Fi P2P 模式之後, 愈來愈多的P2P 應用也開始產生.
    在Wi-Fi P2P 中, P2P 並不需要傳統AP 的存在就能運作, Group Owner 扮演的
    就是Legacy Wi-Fi 中AP 的角色, 而Group Owner 也負責管理Group 中與Client
    端的連線. 要延長供電時間有限的可移植裝置的壽命在Legacy Wi-Fi 中一直都是
    個議題. 而在P2P 中這個問題變得更加的重要, 因為有大量的P2P 應用都是運作
    在可移植且電量有限的裝置上. 目前P2P 中效能不彰的控制方式會導致P2P 網路
    中Group Onwer 的功率大幅的下降. 本文針對P2P 提供兩個功率控制的機制, 透
    過動態蒐集可用的資訊, 例如: 接收的訊號強度與重試的次數, 來完成此項設計. 我
    們首先設計一種以Threshold-Based 的機制當作基礎, 透過它來限制連線中重試的
    最大次數以減少不必要的功率消耗. 但是, 由於還考量到無線網路環境狀態的變化,
    因此再提出另一種自適應功率控制的機制來減少連線中頻繁的重試. 除此之外, 我
    們還建立了實驗, 在Nexus7 裝置上實作這兩種機制並量測出這他們的效能. 而實
    驗結果顯示出我們的機制很明顯的讓功率消耗變低且讓P2P 連線的功率使用變得
    更加有效率.


    By enabling device-to-device communications without the presence of a Wi-Fi Access Point (AP) in Wi-Fi, Wi-Fi Peer-to-Peer (P2P) successfully embraces a wider set of applications and use cases. In particular, the P2P group owner (GO) plays the role of the AP and is responsible of managing connections with P2P group client (GC). To extend the lifetime of power-limited portable devices, power control have been carefully examined in legacy Wi-Fi environment. This issue becomes more critical since Wi-Fi P2P GO now is equipped with power-limited battery, and inefficient power control will lead significant power drop on both Wi-Fi P2P GO and GC. By leveraging the information of connections such as received signal strength and retry
    count, this paper proposes two novel power control mechanisms for Wi-Fi P2P connections.
    We first design a threshold-based mechanism as the baseline, which could
    limit the maximum number of connection retries to eliminate unnecessary power consumption. However, considering the dynamic change of wireless condition, an adaptive power control mechanism is consequently proposed to decrease the negative effects of a busy loop for retries. We establish an intensive experiment by practically implementing both mechanisms in the Andriod system over Nexus 7, in order to evaluate the performance of proposed mechanisms. The experiment results show that the adaptive mechanism can significantly decrease the power consumption and thus makes Wi-Fi P2P connection more efficiently.

    Chinese Abstract . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background and Related Work . . . . . . . . . . .. . . . . . . . . . . . 9 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Wi-Fi P2P Mode . . . . . . . . . . . . . . . . . . . . . . ... . . . 9 2.1.2 P2P Group Communications . . . . . . . . . . . . . . .. .. .. . . . 9 2.1.3 Power Management on P2P GO . . . . . . . . . . . . . . .. ... . . . 11 2.1.4 P2P Opportunistic Power Saving (OPS) . . . . . . . . . .. ... . . . 11 2.2 Related Work . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 12 2.2.1 P2P Group Communications . . . . . . . . . . . . . . .. .. .. . . . 12 2.2.2 Power Control on Legacy Wi-Fi . . . . . . . . . . . . . . .. .. . . 13 2.2.3 Power Control on P2P Mode . . . . . . . . . . . . . . . .. .. . . . 14 2.2.4 Power Consumption Problem on P2P group owner . . . . .. .. .. . . . 16 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Performance Metric . . . . . . . . . . . . . . . .. . . . . . . . . . 18 3.2 System Environment . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Proposed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Threshold-based Retry Control . . . . . . . . . . . . . . . . . . . . 22 4.2 Adaptive Retry Control . . . . . . . . . . . . .. . . . . . . . . . . 25 5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 32

    [1] Wi-fi alliance. [Online]. Available: http://www.wi-fi.org
    [2] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device communications with Wi-Fi Direct: overview and experimentation,” IEEE Wireless Commun. Mag., vol. 20, no. 3, pp. 96–104, June 2013.
    [3] P2P Technical Group, “Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.0,” Wi-Fi Alliance, Tech. Rep., Dec. 2009.
    [4] A. A. Shahin and M. Younis, “Alert dissemination protocol using service discovery in Wi-Fi Direct,” in IEEE ICC 2015, June 2015, pp. 7018–7023.
    [5] P. Chaki, M. Yasuda, and N. Fujita, “Seamless group reformation in wifi peer to peer network using dormant backend links,” in 2015 12th Annual IEEE
    Consumer Communications and Networking Conference, Jan. 2015, pp. 773–778.
    [6] H. Yoo, S. Kim, S. Lee, J.-Y. Hwang, and D. Kim, “Traffic-aware parameter tuning for Wi-Fi Direct power saving,” in ICUFN 2014, July 2014, pp. 479–480.
    [7] A. A. Shahin and M. Younis, “A framework for P2P networking of smart devices using Wi-Fi Direct,” in IEEE PIMRC 2014, Sept. 2014, pp. 2082–2087.
    [8] G. Z. Khan, R. Gonzalez, E.-C. Park, and X.-W. Wu, “A reliable multicast
    MAC protocol for Wi-Fi Direct 802.11 networks,” in EuCNC 2015, June 2015,
    pp. 224–228.
    [9] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation using
    only WiFi power measurements,” IEEE J. Sel. Areas Commun., vol. 33, no. 7,
    pp. 1381–1393, July 2015.
    [10] H. Li and L. Chen, “RSSI-aware energy saving for large file downloading on smartphones,” vol. 7, no. 2, pp. 63–66, June 2015.
    [11] Z. Dou, Z. Zhao, Q. Jin, L. Zhang, Y. Shu, and O. Yang, “Energy-efficient rate adaptation for outdoor long distance WiFi links,” in 2011 IEEE Conference on Computer Communications Workshops, Apr. 2011, pp. 271–276.
    [12] J.-S. Leu, N. H. Tung, and C.-Y. Liu, “Non-parametric RSS prediction based energy saving scheme for moving smartphones,” IEEE Trans. Comput., vol. 63, no. 7, pp. 1793–1801, July 2014.
    [13] Y. D. Park, J.-P. Jeong, and Y.-J. Suh, “Exploiting additional active time of WiFi interface to reduce power consumption of smartphones,” in 2014 IEEE 79th Vehicular Technology Conference, May 2014, pp. 1–5.
    [14] X. Zhang and K. G. Shin, “E-MiLi: Energy-minimizing idle listening in wireless networks,” IEEE Trans. Mobile Comput., vol. 11, no. 9, pp. 1441–1454, Sept. 2012.
    [15] T. Huehn and C. Sengul, “Practical power and rate control for WiFi,” in 2012 21st International Conference on Computer Communications and Networks,
    July 2012, pp. 1–7.
    [16] C. Gandarillas, C. Martín-Engeños, H. L. Pombo, and A. G. Marques, “Dynamic transmit-power control for WiFi access points based on wireless link occupancy,” in 2014 IEEE Wireless Communications and Networking Conference, Apr. 2014, pp. 1093–1098.
    [17] E. Wang, Y. Yang, , and J. Wu, “Energy efficient phone-to-phone communication based on WiFi hotspot in PSN,” in 2015 24th International Conference on Computer Communication and Networks, Aug. 2015, pp. 1–8.
    [18] I. Pefkianakis, J. Chandrashekar, and H. Lundgren, “User-driven idle energy save for 802.11x mobile devices,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, Oct. 2014, pp. 282–290.
    [19] T. Zhang, S. Madhani, P. Gurung, and E. van den Berg, “Reducing energy
    consumption on mobile devices with WiFi interfaces,” in 2005 IEEE Global
    Telecommunications Conference, Nov. 2005, pp. 561–565.
    [20] Wi-Fi Direct in Linux. [Online]. Available: http://linuxwireless.org/en/developers/p2p/
    [21] C. Jin, J.-W. Choi, W.-S. Kang, and S. Yun, “Wi-Fi Direct data transmission for wireless medical devices,” in IEEE ISCE 2014, June 2014, pp. 1–2.

    無法下載圖示 全文公開日期 2021/07/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE