簡易檢索 / 詳目顯示

研究生: 王立翰
Li-Han Wang
論文名稱: 探討鋰離子導離度和Li6PS5Cl固態電解質界面穩定性:鎂基緩衝層之影響
Unraveling Li+ Ionic Conductivity and Interfacial Stability of Li6PS5Cl Solid Electrolyte: Effects of Mg-based Buffer Layers
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 吳溪煌
She-Huang Wu
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 127
中文關鍵詞: 固態電解質界面第一原理計算鋰離子導離度鎂基緩衝層
外文關鍵詞: Solid electrolytes, Interface, First-principles calculations, Li+ ionic conductivity, Mg-based buffer layer
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,為解決鋰離子電池相關安全問題的需求而推動了全固態電池的發展。以硫化物固態電解質組成的全固態電池,因具有高能量密度及高安全性的特性。被視為極具發展性的鋰離子電池之一。在各種固態電解質中,又以Li6PS5Cl具有高離子導電度和易於加工而脫穎而出。然而LPSC的重大問題為與鋰陽極接觸的分解反應,進而導致界面接觸不良、電容量損失和介面電阻增加等問題。為了解決LPSC因分解成導離度較低的產物而造成的界面問題,添加緩衝層已被證明是最有效的解決方法之一。因此,本研究將MgF2和MgS做為緩衝層,預先和鋰陽極反應生成固態電解質界面 (SEI),並利用密度泛函理論 (DFT)、分子動力學模擬 (AIMD) 和CI-NEB方法來探索其生成與鋰離子傳輸性質。
藉由AIMD模擬確定了鋰離子在不同系統(LiF、Li2S、LPSC塊材)內的可能擴散路徑。結果顯示LPSC內部的inter-cage擴散路徑會顯著影響整體鋰離子擴散性質。其計算出的離子導電度為1.395 mS cm-1,與實驗測得的1.33 mS cm-1極度吻合。在探討緩衝層的界面反應時,生成的SEI產物和鋰鎂合金以RDF和電荷分析進行驗證。此外,也計算了人工固態電解質界面(ASEI)與LPSC界面中的鋰離子傳輸特性,包含擴散能障、擴散係數和導離度。值得注意的是,計算結果顯示ASEI的inter-layer擴散是速率決定步驟。Li2S和LiF薄膜的鋰離子擴散能障分別為0.25 eV和0.6 eV,其導離度分別為0.02 mS cm-1與3.4 × 10-8 mS cm-1,凸顯材料選擇對於優化界面特性的重要性。總結來說,本研究探討了硫化鎂緩衝層結合第一原理計算並評估ASEI之界面穩定性。此發現對於塊材和界面中的鋰離子導離度的速率限制步驟提供了重要的見解,並展現其對實驗量測結果的高度吻合。


In recent years, the development of all-solid-state batteries (ASSBs) has been propelled by the need to address safety concerns associated with lithium-ion batteries (LIBs). ASSBs with solid sulfide electrolytes are among the most promising post-lithium-ion batteries, with high energy density and excellent safety. Among the various solid electrolytes (SEs), Li6PS5Cl (LPSC) has emerged as a particularly promising candidate, featuring relatively high Li+ ionic conductivity and excellent flexibility for straightforward processing. However, a significant drawback arises as LPSC tends to decompose upon contact with the Li anode, leading to poor interfacial contact, capacity loss, and an increase in interfacial resistance. To overcome this challenge, the addition of buffer layers has proven to be the most effective solution, preventing the decomposition of LPSC into less ion-conductive products. Consequently, this study considers MgS and MgF2 as buffer layers to pre-react with the lithium anode and explores the formation of solid electrolyte interface (SEI) using density functional theory (DFT), ab initio molecular dynamics simulations (AIMD) and Climbing image Nudged Elastic Band (CI-NEB) methods.
The possible Li+ diffusion pathways across diverse systems, including bulk structures of LiF, Li2S, and LPSC, have been identified using AIMD simulations. The results reveal that the predominant inter-cage diffusion pathway within the LPSC bulk significantly influences overall Li+ diffusion. The calculated Li+ ionic conductivity for this pathway closely aligns with the experimentally measured value. In assessing interfacial stability, the resulting Mg-Li alloy from the buffer layers is thoroughly analyzed using radial distribution function (RDF) and Bader charge analyses. Furthermore, the Li+ transport properties at the interface such as energy barriers, Li+ ionic conductivity, and diffusion coefficient are calculated for each diffusion step in the ASEI/LPSC interfaces. Notably, the findings reveal that inter-layer diffusion within the ASEI structure is the rate-limiting step, impacting overall Li+ transport. Importantly, the calculated Li+ diffusion energy barriers of Li2S and LiF film are 0.25 eV and 0.6 eV, respectively. Results highlight a considerable difference in ion conductivity between the Li2S film (0.02 mS cm-1) and the LiF film (3.4 × 10-8 mS cm-1) on the LPSC surface, emphasizing the importance of material selection for optimizing interfacial properties. In summary, this study employs state-of-the-art simulation methods to incorporate the MgS layer, conducts a comprehensive investigation of Li+ transport properties, and assesses the interfacial stability of the artificial solid electrolyte interface (ASEI). The findings provide important insights into the rate-limiting step of Li+ ionic conductivity in both bulk and interfaces, and they are highly consistent with experimental observations.

Abstract I 摘要 III 致謝 IV Contents V Index of Figures VII Index of Tables XII Chapter 1. Introduction 1 1.1 Rechargeable Lithium-ion battery 1 1.2 The working principle of lithium-ion battery 14 1.3 Anode 17 1.3.1 Lithium metal 17 1.3.2 Graphite 19 1.3.3 Silicon 22 1.4 Cathode 25 1.5 Electrolyte 27 1.5.1 Liquid electrolyte 27 1.5.2 Solid electrolyte 30 1.6 The interface between anode and electrolyte 54 1.7 Present Study 58 Chapter 2. Theoretical Methodology 60 2.1 Density Functional Theory Calculation 60 2.2 Ab initio molecular dynamics simulations 60 2.3 Surface model 63 2.4 Climbing image nudged elastic band (CI-NEB) simulation 70 Chapter 3. Results and Discussion 72 3.1 The Li+ transport property on bulk LPSC 72 3.1.1 The ionic conductivity of LPSC 72 3.1.2 The ionic conductivity of LiF and Li2S 79 3.2 The artificial solid electrolyte interface (ASEI) at the LPSC surface 86 3.2.1 The decomposition of LPSC on the Li anode 87 3.2.2 The reaction mechanism of the buffer layer 92 3.2.3 Electronic properties of SEI products at the interface 98 3.3 The Li+ diffusion mechanism at the interface 103 Chapter 4. Conclusions 113 Reference 115 Appendix 125

1. Hannah, R.; Max, R.; Pablo, R., Co₂ and Greenhouse Gas Emissions. Our World in Data 2020, https://ourworldindata.org/co2-and-greenhouse-gas-emissions.
2. Fatih, B.; Mary, B. W.; Keisuke, S.; Claire, B.; Laura, C.; Dan, D.; Tim, G.; Nick, J.; Pascal, L., Global Energy-Related Greenhouse Gas Emissions. International Energy Agency 2022, https://www.iea.org/data-and-statistics/charts/global-energy-related-greenhouse-gas-emissions-2000-2022.
3. Hannah, R.; Max, R.; Pablo, R., Electricity Generation, 2022. Our world in Data 2022, https://ourworldindata.org/grapher/electricity-generation.
4. Hannah, R.; Max, R.; Pablo, R., Share of Electricity Production by Source. Our World in Data 2023, https://ourworldindata.org/grapher/global-energy-consumption-source.
5. DeCarolis, J. F., U.S. Primary Energy Consumption by Energy Source, 2022. U.S. Energy Information Administration 2023, https://www.eia.gov/energyexplained/us-energy-facts/.
6. Jan, P.; Greg, M.; Sara, M.; Mehdi, S., Achieving 24/7 Renewable Energy by 2025. Peninsula Clean Energy 2021, https://www.canarymedia.com/articles/clean-energy/24-7-carbon-free-energy-is-about-to-become-a-reality-in-california.
7. Staffell, I.; Pfenninger, S., Energy 2018, 145, 65-78.
8. Tong, D.; Farnham, D. J.; Duan, L.; Zhang, Q.; Lewis, N. S.; Caldeira, K.; Davis, S. J., Nat. Commun. 2021, 12, 6146.
9. Anthony, B., Energy Storage Research. National Renewable Energy Laboratory 2023, https://www.nrel.gov/storage/research.html.
10. Argyrou, M. C.; Christodoulides, P.; Kalogirou, S. A., Renew. Sust. Energ. Rev. 2018, 94, 804-821.
11. Luo, X.; Wang, J.; Dooner, M.; Clarke, J., Appl. Energy 2015, 137, 511-536.
12. Michael, S. R., Greenhouse Gas Emissions from a Typical Passenger Vehicle. United States Environmental Protection Agency, EPA 2023, https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle.
13. Fatih, B.; Mary, B. W.; Keisuke, S.; Claire, B.; Laura, C.; Dan, D.; Tim, G.; Nick, J.; Pascal, L., Electric Car Sales Break New Records with Momemtem Expected to Continue through 2023. International Energy Agency 2023, https://www.iea.org/energy-system/transport/electric-vehicles.
14. DeCarolis, J. F., The United States Surpassed Two Million on-Road Light-Duty Electric Vehicles in 2021. U.S. Energy Information Administration 2023, https://www.eia.gov/todayinenergy/detail.php?id=60422.
15. Hu, Y.; Chen, W.; Lei, T.; Jiao, Y.; Huang, J.; Hu, A.; Gong, C.; Yan, C.; Wang, X.; Xiong, J., Adv. Energy. Mater. 2020, 10, 2000082.
16. Chen, W., et al., Adv. Energy. Mater. 2018, 8, 1702348.
17. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J., J. Am. Chem. Soc. 2012, 134, 18510-18513.
18. Tarascon, J. M.; Armand, M., Nature 2001, 414, 359-367.
19. Liu, Y.-T.; Liu, S.; Li, G.-R.; Gao, X.-P., Adv. Mater. 2021, 33, 2003955.
20. Li, M.; Lu, J.; Chen, Z.; Amine, K., Adv. Mater. 2018, 30, 1800561.
21. Lin, X.; Khosravinia, K.; Hu, X.; Li, J.; Lu, W., Prog. Energy Combust. Sci. 2021, 87, 100953.
22. Charalambous, H., et al., ACS Energy Lett. 2021, 6, 3725-3733.
23. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Energ. Environ. Sci. 2014, 7, 513-537.
24. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M., Angew. Chem. Int. Ed. 2018, 57, 15002-15027.
25. Gerstner, E., Nat. Phys. 2010, 6, 836-836.
26. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Science 2004, 306, 666-669.
27. Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S. V.; Firsov, A., Nature 2005, 438, 197-200.
28. Choi, Y.-M.; Pyun, S.-I.; Bae, J.-S.; Moon, S.-I., J. Power Sources 1995, 56, 25-30.
29. Lee, E.; Persson, K. A., Nano Lett. 2012, 12, 4624-4628.
30. Ji, K., et al., Nat. Commun. 2019, 10, 275.
31. Nijamudheen, A.; Sarbapalli, D.; Hui, J.; Rodríguez-López, J.; Mendoza-Cortes, J. L., ACS Appl. Mater. Inter. 2020, 12, 19393-19401.
32. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Nano Lett. 2008, 8, 3498-3502.
33. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K., Science 2008, 320, 356-358.
34. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Science 2008, 321, 385-388.
35. Wang, S.; Dong, Y.; He, C.; Gao, Y.; Jia, N.; Chen, Z.; Song, W., RSC Adv. 2017, 7, 53643-53652.
36. Liao, L.; Peng, H.; Liu, Z., J. Am. Chem. Soc. 2014, 136, 12194-12200.
37. Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G., Electrochem. Commun. 2009, 11, 1849-1852.
38. Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T., J. Phys. Chem. C 2010, 114, 12800-12804.
39. Li, Z.; Li, S.; Wang, T.; Yang, K.; Zhou, Y.; Tian, Z., J. Electrochem. Soc. 2021, 168, 090513.
40. Fu, Y.-X.; Dai, Y.; Pei, X.-Y.; Lyu, S.-S.; Heng, Y.; Mo, D.-C., Appl. Surf. Sci. 2019, 497, 143553.
41. Yang, J.; Sagar, R. U. R.; Anwar, T.; Li, X.; Qian, Z.; Liang, T., Int. J. Energy Res. 2022, 46, 5226-5234.
42. Li, J.; Wang, J.; Yang, J.; Ma, X.; Lu, S., J. Alloys Compd. 2016, 688, 1072-1079.
43. Li, F.-S.; Wu, Y.-S.; Chou, J.; Wu, N.-L., Chem. Commun. 2015, 51, 8429-8431.
44. Wu, H.; Cui, Y., Nano Today 2012, 7, 414-429.
45. Gu, M.; He, Y.; Zheng, J.; Wang, C., Nano Energy 2015, 17, 366-383.
46. Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z., Energy Storage Mater. 2022, 46, 482-502.
47. Choi, J. W.; Aurbach, D., Nat. Rev. Mater. 2016, 1, 16013.
48. Evshchik, E.; Novikov, D.; Levchenko, A.; Nefedkin, S.; Shikhovtseva, A. V.; Bushkova, O. V.; Dobrovolsky, Y. A., Int. J. Electrochem. Sci. 2018, 13, 2860-2874.
49. Zhang, D., et al., Energy Storage Mater. 2023, 63, 102976.
50. Cho, W. C., et al., Nano Lett. 2016, 16, 7261-7269.
51. Mu, G.; Mu, D.; Wu, B.; Ma, C.; Bi, J.; Zhang, L.; Yang, H.; Wu, F., Small 2020, 16, 1905430.
52. Yan, M.-Y.; Li, G.; Zhang, J.; Tian, Y.-F.; Yin, Y.-X.; Zhang, C.-J.; Jiang, K.-C.; Xu, Q.; Li, H.-L.; Guo, Y.-G., ACS Appl. Mater. Inter. 2020, 12, 27202-27209.
53. Whittingham, M. S., Chem. Rev. 2004, 104, 4271-4302.
54. Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A., Energies 2019, 12.
55. ECHEMI Technology Co. Ltd. 2020.
56. Ding, M. S.; Xu, K.; Zhang, S. S.; Amine, K.; Henriksen, G. L.; Jow, T. R., J. Electrochem. Soc. 2001, 148, A1196.
57. Hayamizu, K., J. Chem. Eng. Data 2012, 57, 2012-2017.
58. Yang, H.; Zhuang, G. V.; Ross, P. N., J. Power Sources 2006, 161, 573-579.
59. Jiang, J.; Vicent-Luna, J. M.; Tao, S., J. Energy Chem. 2022, 68, 393-400.
60. Xu, K., Chem. Rev. 2014, 114, 11503-11618.
61. Han, H.-B., et al., J. Power Sources 2011, 196, 3623-3632.
62. Subramanian Parimalam, B.; Lucht, B., J. Electrochem. Soc. 2018, 165, A251-A255.
63. Zhang, S. S., J. Power Sources 2006, 162, 1379-1394.
64. Schmitz, R. W., et al., Prog. Solid State Chem. 2014, 42, 65-84.
65. Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J.-G.; Xu, W., Nat. Energy 2017, 2, 17012.
66. Haregewoin, A. M.; Sorsa, A.; Hwang, B. J., Energy Environ. Sci. 2016, 9.
67. Finegan, D. P., et al., Nat. Commun. 2015, 6, 6924.
68. Miao, X.; Guan, S.; Ma, C.; Li, L.; Nan, C.-W., Adv. Mater. 2023, 35, 2206402.
69. Chen, J.; Wu, J.; Wang, X.; Zhou, A. a.; Yang, Z., Energy Storage Mater. 2021, 35, 70-87.
70. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Chem. Rev. 2020, 120, 6878-6933.
71. Li, M.; Chi, X.; Yu, J., PRX Energy 2022, 1.
72. Sakuda, A.; Hayashi, A.; Tatsumisago, M., Sci. Rep. 2013, 3, 2261.
73. Li, N.-W.; Yin, Y.-X.; Yang, C.-P.; Guo, Y.-G., Adv. Mater. 2016, 28, 1853-1858.
74. Wu, D.; Wu, F., eTransportation 2023, 16, 100224.
75. Manthiram, A.; Yu, X.; Wang, S., Nat. Rev. Mater. 2017, 2, 16103.
76. Yu, Z., et al., Adv. Mater. 2017, 29, 1605561.
77. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Solid State Ion. 2011, 182, 116-119.
78. Jung, W. D.; Jeon, M.; Shin, S. S.; Kim, J.-S.; Jung, H.-G.; Kim, B.-K.; Lee, J.-H.; Chung, Y.-C.; Kim, H., ACS Omega 2020, 5, 26015-26022.
79. Wang, C.; Liang, J.; Kim, J. T.; Sun, X., Sci Adv, 8, eadc9516.
80. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Adv. Mater. 2018, 30, 1803075.
81. Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y., Angew. Chem. Int. Ed. 2019, 58, 8039-8043.
82. Li, X., et al., Nano Lett. 2020, 20, 4384-4392.
83. Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G., Z. Anorg. Allg. Chem. 1997, 623, 1067-1073.
84. Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y. J.; Nam, K.-W.; Jung, Y. S., Chem. Eng. J. 2021, 425, 130630.
85. Li, X., et al., Angew. Chem. Int. Ed. 2019, 58, 16427-16432.
86. Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J., Angew. Chem. Int. Ed. 2021, 60, 6718-6723.
87. Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G., Chem. Mater. 2021, 33, 327-337.
88. Yu, C., et al., Nano Energy 2020, 77, 105097.
89. Li, X., et al., Energ. Environ. Sci. 2019, 12, 2665-2671.
90. Ibrahim, S.; Yassin, M. M.; Ahmad, R.; Johan, M. R., Ionics 2011, 17, 399-405.
91. Ahmad, S., Ionics 2009, 15, 309-321.
92. Meyer, W. H., Adv. Mater. 1998, 10, 439-448.
93. Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y., Adv. Funct. Mater. 2021, 31, 2007598.
94. Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L., Energy Storage Mater. 2016, 5, 139-164.
95. Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X., Energy Storage Mater. 2020, 33, 188-215.
96. Zhang, Y.; Lu, W.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C. M.; Xie, H.; Liu, J., J. Power Sources 2019, 420, 63-72.
97. Liu, K.; Zhang, R.; Sun, J.; Wu, M.; Zhao, T., ACS Appl. Mater. Inter. 2019, 11, 46930-46937.
98. Li, J.; Lin, Y.; Yao, H.; Yuan, C.; Liu, J., ChemSusChem 2014, 7, 1901-1908.
99. Chen, L.; Fan, L. Z., Energy Storage Mater. 2018, 15, 37-45.
100. Jung, Y.-C.; Park, M.-S.; Kim, D.-H.; Ue, M.; Eftekhari, A.; Kim, D.-W., Sci. Rep. 2017, 7, 17482.
101. Chai, J.; Liu, Z.; Zhang, J.; Sun, J.; Tian, Z.; Ji, Y.; Tang, K.; Zhou, X.; Cui, G., ACS Appl. Mater. Inter. 2017, 9, 17897-17905.
102. Quartarone, E.; Mustarelli, P.; Magistris, A., Solid State Ion. 1998, 110, 1-14.
103. Manuel Stephan, A.; Nahm, K. S., Polymer 2006, 47, 5952-5964.
104. Xu, L.; Li, G.; Guan, J.; Wang, L.; Chen, J.; Zheng, J., J. Energy Storage 2019, 24, 100767.
105. Pan, J.; Zhao, P.; Wang, N.; Huang, F.; Dou, S., Energ. Environ. Sci. 2022, 15, 2753-2775.
106. Teng, S.; Tan, J.; Tiwari, A., Curr. Opin. Solid State Mater. Sci. 2014, 18, 29-38.
107. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A., Mater. Res. Bull. 1976, 11, 203-220.
108. Hong, H. Y. P., Mater. Res. Bull. 1976, 11, 173-182.
109. Hou, M.; Liang, F.; Chen, K.; Dai, Y.; Xue, D., Nanotechnology 2020, 31, 132003.
110. Chen, M., et al., Nat. Commun. 2019, 10, 1480.
111. Jolley, A. G.; Cohn, G.; Hitz, G. T.; Wachsman, E. D., Ionics 2015, 21, 3031-3038.
112. Fu, J., Solid State Ion. 1997, 96, 195-200.
113. Fu, J., Solid State Ion. 1997, 104, 191-194.
114. Shin, Y. K.; Sengul, M. Y.; Jonayat, A. S. M.; Lee, W.; Gomez, E. D.; Randall, C. A.; Duin, A. C. T. v., Phys. Chem. Chem. Phys. 2018, 20, 22134-22147.
115. Anantharamulu, N.; Koteswara Rao, K.; Rambabu, G.; Vijaya Kumar, B.; Radha, V.; Vithal, M., J. Mater. Sci. 2011, 46, 2821-2837.
116. Takada, K.; Tansho, M.; Yanase, I.; Inada, T.; Kajiyama, A.; Kouguchi, M.; Kondo, S.; Watanabe, M., Solid State Ion. 2001, 139, 241-247.
117. Kang, J.; Chung, H.; Doh, C.; Kang, B.; Han, B., J. Power Sources 2015, 293, 11-16.
118. Ma, F.; Zhao, E.; Zhu, S.; Yan, W.; Sun, D.; Jin, Y.; Nan, C. W., Solid State Ion. 2016, 295, 7-12.
119. Thokchom, J. S.; Kumar, B., J. Power Sources 2008, 185, 480-485.
120. Liu, M.; Li, X.; Wang, X.; Yu, R.; Chen, M.; Lu, Q.; Lu, B.; Shu, H.; Yang, X., J. Alloys Compd. 2018, 756, 103-110.
121. Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D., Solid State Ion. 1992, 53-56, 647-654.
122. Lacivita, V.; Artrith, N.; Ceder, G., Chem. Mater. 2018, 30, 7077-7090.
123. Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A., Solid State Ion. 2011, 186, 29-36.
124. Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D., J. Power Sources 1993, 43, 103-110.
125. Yu, X.; Bates, J. B.; Jellison, G. E.; Hart, F. X., J. Electrochem. Soc. 1997, 144, 524.
126. Schwöbel, A.; Hausbrand, R.; Jaegermann, W., Solid State Ion. 2015, 273, 51-54.
127. Du, Y. A.; Holzwarth, N. A. W., Phys.Rev. B 2010, 81, 184106.
128. Kozen, A. C.; Pearse, A. J.; Lin, C.-F.; Noked, M.; Rubloff, G. W., Chem. Mater. 2015, 27, 5324-5331.
129. Lu, J.; Li, Y., J. Mater. Sci.: Mater. Electron. 2021, 32, 9736-9754.
130. Latie, L.; Villeneuve, G.; Conte, D.; Le Flem, G., J. Solid State Chem. 1984, 51, 293-299.
131. Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T., Solid State Ion. 1994, 70-71, 196-202.
132. Chen, C. H.; Amine, K., Solid State Ion. 2001, 144, 51-57.
133. Thangadurai, V.; Shukla, A. K.; Gopalakrishnan, J., Chem. Mater. 1999, 11, 835-839.
134. Huang, B.; Xu, B.; Li, Y.; Zhou, W.; You, Y.; Zhong, S.; Wang, C.-A.; Goodenough, J. B., ACS Appl. Mater. Inter. 2016, 8, 14552-14557.
135. Thangadurai, V.; Kaack, H.; Weppner, W. J. F., J. Am. Ceram. Soc. 2003, 86, 437-440.
136. Thangadurai, V.; Weppner, W., Adv. Funct. Mater. 2005, 15, 107-112.
137. Murugan, R.; Weppner, W.; Schmid-Beurmann, P.; Thangadurai, V., J. mater. sci. eng., B 2007, 143, 14-20.
138. Murugan, R.; Thangadurai, V.; Weppner, W., Angew. Chem. Int. Ed. 2007, 46, 7778-7781.
139. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C., Adv. Energy. Mater. 2016, 6, 1501590.
140. Thompson, T.; Yu, S.; Williams, L.; Schmidt, R. D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J. L.; Kioupakis, E.; Siegel, D. J.; Sakamoto, J., ACS Energy Lett. 2017, 2, 462-468.
141. Ohta, S.; Kobayashi, T.; Asaoka, T., J. Power Sources 2011, 196, 3342-3345.
142. Ni, J. E.; Case, E. D.; Sakamoto, J. S.; Rangasamy, E.; Wolfenstine, J. B., J. Mater. Sci. 2012, 47, 7978-7985.
143. Wolfenstine, J.; Jo, H.; Cho, Y.-H.; David, I. N.; Askeland, P.; Case, E. D.; Kim, H.; Choe, H.; Sakamoto, J., Mater. Lett. 2013, 96, 117-120.
144. Bhalla, A. S.; Guo, R.; Roy, R., Mater. Res. Innovations 2000, 4, 3-26.
145. Sun, Y.; Guan, P.; Liu, Y.; Xu, H.; Li, S.; Chu, D., Crit. Rev. Solid State Mater. Sci. 2019, 44, 265-282.
146. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., J. Solid State Chem. 2009, 182, 2046-2052.
147. Xu, L., et al., Adv. Energy. Mater. 2021, 11, 2000648.
148. Wang, C., et al., Chem. Rev. 2020, 120, 4257-4300.
149. Ma, C.; Cheng, Y.; Yin, K.; Luo, J.; Sharafi, A.; Sakamoto, J.; Li, J.; More, K. L.; Dudney, N. J.; Chi, M., Nano Lett. 2016, 16, 7030-7036.
150. David, I. N.; Thompson, T.; Wolfenstine, J.; Allen, J. L.; Sakamoto, J., J. Am. Ceram. Soc. 2015, 98, 1209-1214.
151. Gao, Y. X.; Wang, X. P.; Wang, W. G.; Fang, Q. F., Solid State Ion. 2010, 181, 33-36.
152. Yang, L.; Dai, Q.; Liu, L.; Shao, D.; Luo, K.; Jamil, S.; Liu, H.; Luo, Z.; Chang, B.; Wang, X., Ceram. Int. 2020, 46, 10917-10924.
153. Kanno, R.; Murayama, M., J. Electrochem. Soc. 2001, 148, A742.
154. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R., Solid State Ion. 2011, 182, 53-58.
155. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., J. Am. Chem. Soc. 2013, 135, 975-978.
156. Liu, Z.; Huang, F.; Yang, J.; Wang, B.; Sun, J., Solid State Ion. 2008, 179, 1714-1716.
157. Kaib, T.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S., Chem. Mater. 2012, 24, 2211-2219.
158. Kamaya, N., et al., Nat. Mater. 2011, 10, 682-686.
159. Mo, Y.; Ong, S. P.; Ceder, G., Chem. Mater. 2012, 24, 15-17.
160. Kwon, O.; Hirayama, M.; Suzuki, K.; Kato, Y.; Saito, T.; Yonemura, M.; Kamiyama, T.; Kanno, R., J. Mater. Chem. A 2015, 3, 438-446.
161. Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., Chem. Mater. 2016, 28, 2400-2407.
162. Sun, Y.; Suzuki, K.; Hara, K.; Hori, S.; Yano, T.-a.; Hara, M.; Hirayama, M.; Kanno, R., J. Power Sources 2016, 324, 798-803.
163. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., Nat. Energy 2016, 1, 16030.
164. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., Adv. Mater. 2005, 17, 918-921.
165. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., Energ. Environ. Sci. 2014, 7, 627-631.
166. Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M., Solid State Ion. 2007, 178, 837-841.
167. Dietrich, C.; Weber, D. A.; Culver, S.; Senyshyn, A.; Sedlmaier, S. J.; Indris, S.; Janek, J.; Zeier, W. G., lnorg. Chem. 2017, 56, 6681-6687.
168. Hood, Z. D.; Kates, C.; Kirkham, M.; Adhikari, S.; Liang, C.; Holzwarth, N. A. W., Solid State Ion. 2016, 284, 61-70.
169. Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T., Chem. Lett. 2001, 30, 872-873.
170. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Solid State Ion. 2012, 221, 1-5.
171. Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Angew. Chem. Int. Ed. 2008, 47, 755-758.
172. Zhao, E., et al., Chem. Commun. 2021, 57, 10787-10790.
173. Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.-H.; Shen, Y.; Li, L.; Nan, C.-W., ACS Appl. Mater. Inter. 2018, 10, 42279-42285.
174. Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R., Chem. Mater. 2019, 31, 8673-8678.
175. Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W., Adv. Energy. Mater. 2020, 10, 1903311.
176. Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. M., Adv. Energy. Mater. 2021, 11, 2002689.
177. Peled, E., J. Electrochem. Soc. 1979, 126, 2047.
178. Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y., J. Power Sources 1999, 81-82, 95-111.
179. Winter, M., Zeitschrift Fur Physikalische Chemie-international Journal of Research in Physical Chemistry & Chemical Physics - Z PHYS CHEM 2009, 223, 1395-1406.
180. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Npj Comput. Mater. 2018, 4, 15.
181. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., J. Power Sources 2005, 147, 269-281.
182. Goodenough, J. B.; Kim, Y., Chem. Mater. 2010, 22, 587-603.
183. Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G., Jr.; Li, H.; Harris, S. J., J. Am. Chem. Soc. 2012, 134, 15476-15487.
184. Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y., Adv. Mater. 2018, 30, 1705702.
185. Perdew, J. P.; Zunger, A., Phys.Rev. B 1981, 23, 5048-5079.
186. Kresse, G.; Furthmüller, J., Phys.Rev. B 1996, 54, 11169-11186.
187. Kresse, G.; Furthmüller, J., Comp. Mater. Sci. 1996, 6, 15-50.
188. Blöchl, P. E., Phys.Rev. B 1994, 50, 17953-17979.
189. Kresse, G.; Joubert, D., Phys.Rev. B 1999, 59, 1758-1775.
190. Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett. 1996, 77, 3865-3868.
191. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., J. Chem. Phys. 2010, 132, 154104.
192. Grimme, S.; Ehrlich, S.; Goerigk, L., J. Comput. Chem. 2011, 32, 1456-1465.
193. Henkelman, G.; Arnaldsson, A.; Jónsson, H., Comp. Mater. Sci. 2006, 36, 354-360.
194. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R., J. Chem. Phys. 1984, 81, 3684-3690.
195. Hoover, W. G., Phys. Rev. A 1985, 31, 1695-1697.
196. Nosé, S., J. Chem. Phys. 1984, 81, 511-519.
197. Chen, Y.; Yao, L.; Chen, X.; Jin, J.; Wu, M.; Wang, Q.; Zha, W.; Wen, Z., ACS Appl. Mater. Inter. 2022, 14, 11950-11961.
198. Cao, M.; Wang, Y.; Qi, Y.; Guo, C.; Hu, C., J. Solid State Chem. 2004, 177, 2205-2209.
199. Goo, N. H.; Hirscher, M., J. Alloys Compd. 2005, 404-406, 503-506.
200. Branton, A.; Trivedi, D.; Nayak, G.; Trivedi, M., 2015.
201. Benoit, C.; Giordano, J., J. Phys. C: Solid State Phys. 2000, 21, 5209.
202. Ekinci, Y.; Toennies, J. P., Surf Sci. 2004, 563, 127-134.
203. Takeuchi, T., et al., Solid State Ion. 2018, 320, 387-391.
204. Henkelman, G.; Jónsson, H., J. Chem. Phys. 2000, 113, 9978-9985.
205. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., J. Chem. Phys. 2000, 113, 9901-9904.
206. de Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M., Chem. Mater. 2016, 28, 7955-7963.
207. Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; Roslon, I.; van Eck, E. R. H.; Kentgens, A. P. M.; Wagemaker, M., J. Am. Chem. Soc. 2016, 138, 11192-11201.
208. Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M., Adv. Energy. Mater. 2021, 11.
209. Fan, X., et al., Chem 2018, 4, 174-185.
210. Lorger, S.; Narita, K.; Usiskin, R.; Maier, J., Chem. Commun. 2021, 57, 6503-6506.
211. Zheng, J.; Ju, Z.; Zhang, B.; Nai, J.; Liu, T.; Liu, Y.; Xie, Q.; Zhang, W.; Wang, Y.; Tao, X., J. Mater. Chem. A 2021, 9, 10251-10259.
212. Chen, Y. C.; Ouyang, C. Y.; Song, L. J.; Sun, Z. L., J. Phys. Chem. C 2011, 115, 7044-7049.
213. Geschwind, G., J. Phys. Chem. Solids 1969, 30, 1631-1635.
214. Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J., Nat. Rev. Mater. 2021, 6, 1020-1035.
215. Lorger, S.; Usiskin, R. E.; Maier, J., Adv. Funct. Mater. 2019, 29, 1807688.
216. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J., Solid State Ion. 2018, 318, 102-112.
217. Kong, L.-L.; Wang, L.; Ni, Z.-C.; Liu, S.; Li, G.-R.; Gao, X.-P., Adv. Funct. Mater. 2019, 29, 1808756.
218. Yang, H.; Wu, N., Energy Sci. Eng. 2022, 10, 1643-1671.
219. Park, S.; Chaudhary, R.; Han, S. A.; Qutaish, H.; Moon, J.; Park, M.; Kim, J. H., Energy Mater. 2023, 3, 300005.
220. Chen, H., et al., Adv. Energy. Mater. 2019, 9, 1900858.
221. Zhang, H.; Ju, S.; Xia, G.; Sun, D.; Yu, X., Adv. Funct. Mater. 2021, 31, 2009712.
222. Meda, U. S.; Lal, L.; M, S.; Garg, P., J. Energy Storage 2022, 47, 103564.
223. Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y., Nano Lett. 2017, 17, 3731-3737.

無法下載圖示
全文公開日期 2029/01/29 (校外網路)
全文公開日期 2029/01/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE