簡易檢索 / 詳目顯示

研究生: 張潤仕
Jun-Shih Chang
論文名稱: 分子動力學模擬析出物界面鍵結強度對鐵奈米線拉伸行為之影響
Effect of Interfacial Bonding Strength of Precipitate on Iron Nanowires Simple Tension Behaviors by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
鍾俊輝
Chun-Hui Chung
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 215
中文關鍵詞: 分子動力學鐵奈米線析出物
外文關鍵詞: Molecular dynamics, Iron nanowire, Precipitate
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用分子動力學(Molecular Dynamics,MD)模擬奈米鐵線包含析出物之機械行為。模擬結果顯示, <110>與<100>單晶奈米鐵線與雙晶粒奈米鐵線在拉伸過程中,因較高之應變速率拉伸,導致奈米鐵線以雙晶變形為主。單晶奈米鐵線內部含析出物時,會破壞其完美晶體結構,造成降伏應力值降低;雙晶粒奈米鐵線若含析出物在晶界上,析出物會阻礙晶界上之雙晶變形啟動,使其降伏應變與應力值提高。析出物與基材界面鍵結較強者,因析出物與基材有較強之鍵結力,在雙晶變形擴展的過程中會有較大之剪應力,雙晶越過析出物時,會先形成差排環,隨後差排環會將析出物剪切變形;析出物與基材界面鍵結較弱者,析出物所受之應力值相對較低,使其無法被剪切變形,會在析出物周圍會形成差排環與微孔隙。微孔隙在頸縮後受到軸向應力之拉伸而被拉長並誘發應力集中,試片會在析出物周圍斷裂,並在破裂面形成dimple之延性破斷特徵。


The main purpose of this paper is using the molecular dynamics to investigate mechanical behavior of iron nanowire contains precipitate. Simulation results show, iron nanowires of <110>/<100> structure and Bi-Crystal will dominate by twin deformation in uniaxial tensile process. If iron nanowire of single crystalline contains precipitate, it will destroy perfect crystal structure of iron nanowire, resulting in reduced yield stress. When iron nanowire of Bi-Crystal contains precipitate on grain boundary, precipitate will obstruct twinning, resulting in strain and stress of yield are raised.If the interfacial bonding strength between precipitate and matrix is strong, due to precipitate and matrix have strong bonding force, in process of dislocations slip will be accompanied by high shearing stress. When dislocation bypass precipitate, it will form a dislocation loop, follow by dislocation loop will accompanied by a high shear force and shear of precipitate. If the interfacial bonding strength between precipitate and matrix is weak, due to shearing force of dislocation slipping cannot shear precipitate, the precipitate will prevent the dislocation slipping and form a dislocation loop and microvoid around the precipitate. The microvoid are stretched by stress after necking, and the microvoid will be elongate. Finally, the model break around the precipitate and form a ductile fracture feature “dimple” on the rupture surface.

目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表索引 VI 圖索引 VII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 第二章 分子動力學基礎理論 8 2.1 分子動力學之基本假設 8 2.2 分子間作用力與勢能函數 8 2.3 運動方程式及演算法 14 2.4 VERLET 表列法 19 2.5 無因次化 22 2.6 原子級應力計算方法 24 2.7 CENTROSYMMETRY參數(CSP) 29 第三章 模擬步驟與模型建立 32 3.1 程式模擬步驟 32 3.1.1 初始設定(Initialization) 32 3.1.2 系統平衡(Equilibration) 43 3.1.3 動態模擬(Production) 44 3.2 模型建立 45 第四章 結果與討論 51 4.1 <110>奈米鐵線的拉伸變形機構分析 54 4.1.1 [101]奈米鐵線不含析出物之拉伸行為 57 4.1.2 [101]奈米鐵線含界面弱鍵結析出物之拉伸行為 69 4.1.3 [101]奈米鐵線含界面強鍵結析出物之拉伸行為 80 4.1.4 [101]奈米鐵線有/無內含析出物之機械性質比較 91 4.2 <100>奈米鐵線的拉伸變形機構分析 94 4.2.1 [001]奈米鐵線不含析出物的拉伸行為 96 4.2.2 [001]奈米鐵線含界面弱鍵結析出物之拉伸行為 107 4.2.3 [001]奈米鐵線含界面弱鍵結析出物於 應變率拉伸之行為 116 4.2.4 [001]奈米鐵線含界面強鍵結析出物之拉伸行為 123 4.2.5 [001]奈米鐵線含界面強鍵結析出物於 應變率拉伸之行為 134 4.2.6 [001]奈米鐵線有/無內含析出物之機械性質比較 141 4.3 雙晶粒奈米鐵線包含析出物之拉伸行為分析 145 4.3.1 雙晶粒奈米鐵線不包含析出物之拉伸行為 149 4.3.2 雙晶粒奈米鐵線含單一界面弱鍵結析出物之拉伸行為 159 4.3.3 雙晶粒奈米鐵線含單一界面強鍵結析出物之拉伸行為 170 4.3.4 雙晶粒奈米鐵線含兩顆界面弱鍵結析出物之拉伸行為 180 4.3.5 雙晶粒奈米鐵線含兩顆界面強鍵結析出物之拉伸行為 191 4.3.6 雙晶粒奈米鐵線有/無內含析出物之機械性質比較 201 4.3.7 單/雙晶粒奈米鐵線之機械性質比較 205 第五章 結論與建議 207 5.1 結論 207 5.2 未來研究方向與建議 209 參考文獻 210

1. C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things" , MRS Bull, Vol.28, pp.486-491(2003).
2. D. Huo, Y. Liang and K. Cheng, "An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation" , Journal of Mechanical Engineering Science, Vol. 221, pp. 259-266 (2007) .
3. L. N. Mastorakos, H. M. Zbib, D. F. Bahr, J. Parsons and M. Faisal,"Pseudoelastic Behavior of Cu-Ni Composite Nanowires", Applied Physics Letters, 94, 043104(2009).
4. H. Rafii-Tabar, "Modelling The Nano-Scale Phenomena in Condensed Matter Physics Via Computer-Based Numerical Simulations", Physics Reports, Vol.325, pp.239-310(2000).
5. Y. Kondo and K. Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science, Vol.289, pp.606-608(2000).
6. V. Rodrigues, T. Fuhrer and D. Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires", Physical Review Letters, Vol.85, No.19, pp.4124-4127(2000).
7. Z. Pan, Y. Li and Q. Wei, "Tensile Properties of Nanocrystalline Tantalum from Molecular Dynamics Simulations", Acta Materialia, Vol.56, pp.3470-3480(2008).
8. L. Yuan, D. Shan and B. Guo, "Molecular Dynamics Simulations of Tensile Deformation of Nano-Single Crystal Aluminum", Journal of Materials Processing Technology, Vol.184, pp.1-5(2007).
9. J. Dian, K. Gall, M. L. Dunn and J. A. Zimmerman, "Atomistic Simulations of The Yielding of Gold Nanowires", Acta Materialia, Vol.54, pp.643-653(2006).
10. Y. H. Wen, Z. Z. Zhu and R. Z. Zhu, "Molecular Dynamics Study of The Mechanical Behavior of Nickel Nanowire: Strain Rate Effects", Computational Materials Science, Vol.41, pp.553-560(2008).
11. Z. C. Lin and J. C. Hung, "A Study On A Rigid Body Boundary Layer Interface Force Model For Stress Calculation and Stress-Strain Behaviour of Nanoscale Uniaxial Tension", Nanotechnology, Vol.15, pp.1509-1518(2004).
12. Y. H. Lin, S. R. Jian and Y. S. Lai, "Molecular Dynamics Simulation of Nanoindentation-Induced Mechanical Deformation and Phase Transformation", Nano Express, Vol.3, pp.71-75(2008).
13. Y. X. Shen, H. R. Gong, L. T. Kong and B. X. Liu, "Structural Phase Transitions in The Cu-Based Cu-V Solid Solutions Studied By Molecular Dynamics Simulation", Journal of Alloys And Compounds, Vol.366, pp.205-212(2004).
14. J. Wang, W. Hu, X. Li, S. Xiao and H. Deng, "Strain-Driven Phase Transition of Molybdenum Nanowire Under Uniaxial Tensile Strain", Computational Materials Science, Vol.50, pp.373-377(2010).
15. 黃再利., "分子動力學模擬奈米銅線結晶型態及機械行為研究",國立台灣科技大學碩士論文, (2009).
16. T. H. Fang, C. I. Weng and J. G. Chang, "Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement", Materials Science Engineering, Vol.357, pp.7-12(2003).
17. G. Chevrot, E. Bourasseau, N. Pineau and J. B. Maillet, "Molecular Dynamics Simulations of Nanocarbons at High Pressure and Temperature", Carbon, Vol.47, pp.3392-3402(2009).
18. A. BrÓdka, J. Kołoczek, A. Burian, J. C. Dore, A. C. Hannon and A. Fonseca, "Molecular Dynamics Simulation of Carbon Nanotube Structure", Journal of Molecular Structure, Vol.792-793, pp.78-81(2006).
19. J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
20. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
21. L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
22. B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
23. D. C. Rapaport, "Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers", Computer Physics Reports, 2001, Vol.9, pp.1-53(1988).
24. M. Meyer and V. Pontikis, "Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications", Kluwer Academic Publishers, USA, (1991).
25. S. L. Frederiksen, K. W. Jacobsen and J. Schiotz, "Simulations of Intergranular Fracture in Nanocrystalline Molybdenum", Acta Materialia, Vol.52, pp.5019-5029(2004).
26. V. V. Stegaĭlov ans A. V. Yanilkin, "Structural Transformations in Single-Crystal Iron during Shock-Wave Compression and Tension: Molecular Dynamics Simulation", Journal of Experimental and Theoretical Physics, Vol.104, No.6, pp.928-935(2007).
27. G. Sainath, B. K. Choudhary, "Orientation dependent deformation behaviour of BCC iron nanowires", Computational Materials Science, Vol.111, pp.406–415(2016)
28. J. H. Shim, H. J. Lee Voigt, B. D. Wirth, "Temperature dependent dislocation bypass mechanism for coherent precipitates in Cu-Co alloys", Acta Materialia, Vol.110, pp.276-282(2016)
29. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
30. J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
31. P. M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
32. M. S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
33. M. S. Daw, "Model of Metallic Cohesion: The Embedded-Atom Method", Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
34. R. A. Johnson, "Analytic Nearest-Neighbor Model for FCC Metals", Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
35. R. A. Johnson, "Alloy Models with The Embedded-Atom Method", Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
36. R. A. Johnson and D.J. Oh, "Analytic embedded atom method model for bcc metals",
37. F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, Volume 48, Number 1 July 1993.
38. Y. Mishin and D. Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations", Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
39. C. W. Gear, "Numerical Initial Value Problems in Ordinary Differential Equations", Prentice-Hall, Englewood Cliffs, NJ, (1971).
40. J. M. Haile, "Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication) ", John Wiley and Sons, Inc, USA, (1992).
41. R. Calusius, "On a Mechanical Theory Applicable to Heat", Philosophical Magazine, Vol.40, pp.122-127(1870).
42. Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
43. D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model", Philosophical Magazine A, Vol.44, pp.847-866(1981).
44. N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
45. Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method", Molecular Simulation, Vol.33, pp. 979-988(2007).
46. T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)" , JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
47. C.L.Kelchner, S.J.Plimpton and J.C.Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
48. 彭達仁,"分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析",國立台灣科技大學博士論文,(2008)。
49. A. M. Guellil and J. B. Adams, "The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys", Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
50. Z. Bangwei and O. Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
51. I. H. Dursun, Z. B. Güvenç and E. Kasap, "A Simple Analytical EAM Model for Some BCC Metals", Commun Nonlinear Sci Numer Simulat, Vol.15, pp.1259-1266(2010).
52. M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals", Philosophical Magazine A, Vol.50, pp.45-55(1984).
53. R. A. Johnson and D. J. Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM, (1988).
54. J. P. Hirth and J. Lothe, Theory of Dislocation(2nd ed.), Wiley, New York, pp.835-839(1982).
55. H. Liu and J. Zhou, "Atomic-scale analysis of deformation mechanisms of nanotwinned polycrystalline Ni nanowires during tension", Computational Materials Science, Vol.113, pp.27–37(2016).
56. R.A. Kellogg, A.M. Russell, T.A. Lograsso, A.B. Flatau, A.E. Clark and M. Wun-Fogle, "Mechanical properties of magnetostrictive iron-gallium alloys." (2003).
57. A. Cao, "Shape memory effects and pseudoelasticity in bcc metallic nanowires." Journal of Applied Physics 108.11 (2010): 113531.

無法下載圖示 全文公開日期 2022/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE