簡易檢索 / 詳目顯示

研究生: 林雋銘
Juan-Ming Lin
論文名稱: 合成含苯並咪唑側基之不對稱型聚醯亞胺質子交換膜及其性質研究
Synthesis and Characterization of Asymmetric Polyimides Bearing Benzimidazole Pendant Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 王健珍
Jane-Jen Wang
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 苯並咪唑聚醯亞胺質子交換膜質子傳導度
外文關鍵詞: Benzimidazole, Polyimide, Proton Exchange Membrane, Proton conductivity
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功開發含有苯並咪唑側基的新二胺單體1,4-bis(4-amino-2-(2-benzimidazole)phenoxy)-2-tert-butylbenzene (TBH/IM/NH2),並與其他芳香族二胺及六環酸酐1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA)進行聚縮合反應合成聚醯亞胺(PI)共聚物,其固有黏度範圍在0.79~1.20 dL/g,均可塗佈成具韌性薄膜,這些共聚物均有好的熱安定性,於氮氣下10 %重量損失裂解溫度皆超過470 ℃以上,經磷酸摻雜的PI膜質子傳導度大小受到摻雜磷酸量和溫度影響,而本研究所合成PI共聚物的磷酸摻雜量均低於m-PBI,但質子傳導度幾乎都比m-PBI高,這結果顯示本研究所合成含第三丁側基及醚基為主鏈,並含有巨大的苯並咪唑側基之聚醯亞胺共聚物,有利於質子通道形成因而增加質子傳導度,尤其是PF系列,因為三氟甲基的疏水性更有利形成離子通道,在二個系列中有最高的質子傳導度,例如C-TBH8PF2NA8在160℃時之質子傳導度(263% H3PO4 uptake , 110.4 mS/cm)約為m-PBI二倍 (280% H3PO4 uptake, 56.8 mS/cm),是很有潛力應用於高溫型燃料電池的質子交換膜。


A novel diamine, 1,4-bis(4-amino-2-(2-benzimidazole)phenoxy)-2-tert-butylbenzene (TBH/IM/NH2), containing a benzimidazole pendant groups and flexible ether linkage was synthesized successfully. The copolyimides (PIs) were synthesized by polycondensation from 1,4-bis(4-amino-2-(2-benzimidazole)phenoxy)-2-tert-butylbenzene (TBH/IM/NH2), the aromatic diamine and 1,4,5,8-Naphthalene-tetracarboxylic dianhydride (NTDA). They had inherent viscosities of 0.79~1.20 dL/g. All copolyimides formed tough and transparent films. The PIs exhibited high thermal stability with 10 % decomposition temperature more than 470 oC in nitrogen. The proton conductivity of phosphoric acid doped PI was dependent on doping PA level and temperature. These PIs with relatively low acid doping level have higher proton conductivity than m-BPI. For example, C-TBH8PF2NA8 had the highest proton conductivity at 160 oC (263 % H3PO4 uptake, 110.4 mS/cm) among those polyimides. The results were attributable to that the PIs can easily form the ion channels and enhance the proton conductivity. Thus, these PIs could be the promising materials alternative to m-PBI membrane for high-temperature fuel cells applications because of their high proton conductivity and good oxidative stability.

摘要 I Abstract II 目錄 III 圖索引 V 表索引 VII 第一章 緒論 1 1.1前言 1 1.2燃料電池介紹 2 1.2.1 燃料電池的運作原理 2 1.2.2 燃料電池的優點 3 1.2.3 燃料電池的種類 4 1.3質子交換膜燃料電池 12 1.3.1 質子交換膜燃料電池的結構 12 1.3.2 觸媒毒化現象 14 1.3.3 高溫質子交換膜燃料電池的介紹 15 第二章 文獻回顧 16 2.1質子交換膜 16 2.1.1 質子交換膜介紹 16 2.1.2 質子交換膜的種類 18 2.2高性能聚醯亞胺介紹 26 2.2.1 聚醯亞胺的合成 27 2.2.2 聚醯亞胺的改質 30 2.3聚醯亞胺在高溫型質子交換膜之應用 32 2.4交聯介紹 35 2.5研究動機與內容 37 第三章 實驗 39 3.1實驗藥品 39 3.2聚醯亞胺共聚物實驗程序 41 3.2.1 單體合成 42 3.2.2 聚醯亞胺共聚物合成 45 3.3聚合物之物性與化性分析 47 第四章 結果與討論 51 4.1單體與PIs的合成 51 4.2固有黏度 56 4.3溶解度測試 57 4.4確認交聯反應 59 4.5熱性質分析 62 4.6 PI共聚合物組成對磷酸摻雜量的效應 65 4.7膨潤度的測試 68 4.8質子傳導度分析 70 4.8.1溫度與磷酸摻雜對質子傳導度的效應 70 4.8.2化學構造對質子傳導度的效應 74 4.9 機械性質量測 78 4.9.1未摻雜磷酸薄膜機械性質量測 78 4.9.2摻雜磷酸薄膜機械性質量測 80 4.10 氧化安定性測試 82 第五章 結論 83 第六章 參考文獻 84

1. 林若蓁, 全國性氫能發展整體規劃期末報告書. 2017, 4-18.
2. Johansson, B., A broadened typology on energy and security. Energy 2013, 53, 199-205.
3. Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P., Recent advances and challenges of fuel cell based power system architectures and control - A review. Renewable & Sustainable Energy Reviews 2017, 73, 10-18.
4. Kirubakaran, A.; Jain, S.; Nema, R. K., A review on fuel cell technologies and power electronic interface. Renewable & Sustainable Energy Reviews 2009, 13 (9), 2430-2440.
5. EG&G Technical Services, I., Fuel Cell Hankbook (7th Edition). 2002, 7-9.
6. Liu, D.; Case, S., Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile. Journal of Power Sources 2006, 162 (1), 521-531.
7. Andujar, J. M.; Segura, F., Fuel cells: History and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews 2009, 13 (9), 2309-2322.
8. Dillon, R.; Srinivasan, S.; Arico, A. S.; Antonucci, V., International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources 2004, 127 (1-2), 112-126.
9. Will, J.; Mitterdorfer, A.; Kleinlogel, C.; Perednis, D.; Gauckler, L. J., Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 2000, 131 (1-2), 79-96.
10. Li, Q. F.; He, R. H.; Gao, J. A.; Jensen, J. O.; Bjerrum, N. J., The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C. Journal of the Electrochemical Society 2003, 150 (12), A1599-A1605.
11. Waszczuk, P.; Lu, G. Q.; Wieckowski, A.; Lu, C.; Rice, C.; Masel, R. I., UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta 2002, 47 (22-23), 3637-3652.
12. Yang, C.; Costamagna, P.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B., Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Journal of Power Sources 2001, 103 (1), 1-9.
13. Marcinkoski, J.; James, B. D.; Kalinoski, J. A.; Podolski, W.; Benjamin, T.; Kopasz, J., Manufacturing process assumptions used in fuel cell system cost analyses. Journal of Power Sources 2011, 196 (12), 5282-5292.
14. Atyabi, S. A.; Afshari, E.; Wongwises, S.; Yan, W. M.; Hadjadj, A.; Shadloo, M. S., Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy 2019, 179, 490-501.
15. Kwan, T. H.; Wu, X. F.; Yao, Q. H., Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells. Applied Energy 2018, 217, 314-327.
16. Wu, Y.; Cho, J. I. S.; Neville, T. P.; Meyer, Q.; Ziesche, R.; Boillat, P.; Cochet, M.; Shearing, P. R.; Brett, D. J. L., Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study. Journal of Power Sources 2018, 399, 254-263.
17. Cha, D.; Jeon, S. W.; Yang, W.; Kim, D.; Kim, Y., Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions. Energy 2018, 150, 320-328.
18. Authayanun, S.; Hacker, V., Energy and exergy analyses of a stand-alone HT-PEMFC based trigeneration system for residential applications. Energy Conversion and Management 2018, 160, 230-242.
19. Authayanun, S.; Saebea, D.; Patcharavorachot, Y.; Arpornwichanop, A., Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system. Energy 2015, 80, 331-339.
20. Devrim, Y.; Albostan, A.; Devrim, H., Experimental investigation of CO tolerance in high temperature PEM fuel cells. International Journal of Hydrogen Energy 2018, 43 (40), 18672-18681.
21. Moradi, M.; Moheb, A.; Javanbakht, M.; Hooshyari, K., Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC). International Journal of Hydrogen Energy 2016, 41 (4), 2896-2910.
22. Dadda, B.; Abboudi, S.; Ghezal, A., Transient two-dimensional model of heat and mass transfer in a PEM fuel cell membrane. International Journal of Hydrogen Energy 2013, 38 (17), 7092-7101.
23. Smitha, B.; Sridhar, S.; Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications - a review. Journal of Membrane Science 2005, 259 (1-2), 10-26.
24. Verma, A.; Pitchumani, R., Influence of membrane properties on the transient behavior of polymer electrolyte fuel cells. Journal of Power Sources 2014, 268, 733-743.
25. Rikukawa, M.; Sanui, K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science 2000, 25 (10), 1463-1502.
26. Li, X. F.; Zhao, C. J.; Lu, H.; Wang, Z.; Na, H., Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application. Polymer 2005, 46 (15), 5820-5827.
27. Bai, H.; Ho, W. S. W., New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells. Journal of the Taiwan Institute of Chemical Engineers 2009, 40 (3), 260-267.
28. Wang, G.; Xiao, G. Y.; Yan, D. Y., Synthesis and properties of soluble sulfonated polybenzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate group as proton exchange membrane. Journal of Membrane Science 2011, 369 (1-2), 388-396.
29. Adanur, S.; Zheng, H., Synthesis and Characterization of Sulfonated Polyimide Based Membranes for Proton Exchange Membrane Fuel Cells. Journal of Fuel Cell Science and Technology 2013, 10 (4).
30. Li, Q. F.; Hjuler, H. A.; Bjerrum, N. J., Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. Journal of Applied Electrochemistry 2001, 31 (7), 773-779.
31. Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M., Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews 2004, 104 (10), 4637-4678.
32. Kreuer, K. D.; Rabenau, A.; Weppner, W., Vehicle mechanism. A new model for the interpretation of the conductivity of fast proton conductors. Angewandte Chemie-International Edition in English 1982, 21 (3), 208-209.
33. Xing, B. Z.; Savadogo, O., The effect of acid doping on the conductivity of polybenzimidazole (PBI). Journal of New Materials for Electrochemical Systems 1999, 2 (2), 95-101.
34. Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F., Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. Journal of the Electrochemical Society 2004, 151 (1), A8-A16.
35. Glipa, X.; Bonnet, B.; Mula, B.; Jones, D. J.; Roziere, J., Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. Journal of Materials Chemistry 1999, 9 (12), 3045-3049.
36. Bouchet, R.; Miller, S.; Duclot, M.; Souquet, J. L., A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 2001, 145 (1-4), 69-78.
37. Yoda, N.; Hiramoto, H., New photosensitive high temperature polymers for electronic applications. Journal of Macromolecular Science-Chemistry 1984, A21 (13-1), 1641-1663.
38. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 2012, 37 (7), 907-974.
39. Dixit, B. C.; Dixit, R. B.; Desai, D. J., Synthesis, Characterization and Material Application of Novel Polyimide. International Journal of Polymeric Materials 2009, 58 (4), 229-242.
40. Bogert, M. T.; Renshaw, R. R. J. A. C. S., 1908, 30,1135.
41. Edwards, W. M.; Robison, I. M., U.S. Pat., 2710853. 1955.
42. Serafini, T. T.; Delvigs, P.; Lightsey, G. R., Thermally stable polyimides from solutions of monomeric reactions. Journal of Applied Polymer Science 1972, 16 (4), 905-&.
43. Gresham, W. F.; Naylor, M. A., U.S. pat 2,731,447. 1956.
44. Grundschober, M., British Pat.1190719. 1978.
45. Hasegawa, M., Semi-aromatic polyimides with low dielectric constant and low CTE. High Performance Polymers 2001, 13 (2), S93-S106.
46. 蘇盟雄, 含第三丁基可溶性聚醯胺-醯亞胺之合成及性質研究,成功大學化工系碩士論文. 2002.
47. Chern, Y. T.; Huang, C. M.; Huang, S. C., Synthesis and characterization of new poly(amide-imide)s containing 4,9-diamantane moieties in the main chain. Polymer 1998, 39 (13), 2929-2934.
48. Yang, C. P.; Chen, R. S.; Huang, C. C., Preparation and characterization of colorless alternate poly(amide-imide)s based on trimellitic anhydride and 2,2-bis 4-(3-aminophenoxy) phenyl sulfone. Journal of Polymer Science Part a-Polymer Chemistry 1999, 37 (14), 2421-2428.
49. Khune, G. D., Preparation and properties of polyimides and polyamide‐imides from diisocyanates. Journal of Macromolecular Science-Chemistry 1980, A14 (5), 687-711.
50. Wang, C. Y.; Cao, S. J.; Chen, W. T.; Xu, C.; Zhao, X. Y.; Li, J.; Ren, Q., Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups. Rsc Advances 2017, 7 (42), 26420-26427.
51. Harris, F. W.; Feld, W. A.; Lanier, L. H., Soluble aromatic polyimides from phenylated dianhydrides. Abstracts of Papers of the American Chemical Society 1975, (169), 97-97.
52. Ghatge, N. D.; Shinde, B. M.; Mulik, U. P., Polyimides from dianhydrides and bis(p‐aminophenyl) alkane diamines. I. Journal of Polymer Science Part a-Polymer Chemistry 1984, 22 (11), 3359-3365.
53. Takekoshi, T.; Wirth, J. G.; Heath, D. R.; Kochanowski, J. E.; Manello, J. S.; Webber, M. J., Polymer syntheses via aromatic nitro displacement reaction. Journal of Polymer Science Part a-Polymer Chemistry 1980, 18 (10), 3069-3080.
54. Kapantaidakis, G. C.; Koops, G. H.; Wessling, M.; Kaldis, S. P.; Sakellaropoulos, G. P., CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. Aiche Journal 2003, 49 (7), 1702-1711.
55. Yanagishita, H.; Maejima, C.; Kitamoto, D.; Nakane, T., Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process. Journal of Membrane Science 1994, 86 (3), 231-240.
56. Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y., Synthesis and characterization of novel soluble triphenylamine-containing aromatic polyamides based on N,N '-bis(4-aminophenyl)-N,N '-diphenyl-1,4-phenylenediamine. Journal of Polymer Science Part a-Polymer Chemistry 2002, 40 (16), 2810-2818.
57. Yang, C. P.; Hsiao, S. H.; Chen, K. H., Organosoluble and optically transparent fluorine-containing polyimides based on 4,4 '-bis(4-amino-2-trifluoromethylphenoxy)-3,3 ',5,5 '-tetramethylbiphenyl. Polymer 2002, 43 (19), 5095-5104.
58. Pu, H. T.; Wang, D., Studies on proton conductivity of polyimide/H3PO4/imidazole blends. Electrochimica Acta 2006, 51 (26), 5612-5617.
59. Pandey, R. P.; Shahi, V. K., Aliphatic-aromatic sulphonated polyimide and acid functionalized polysilsesquioxane composite membranes for fuel cell applications. Journal of Materials Chemistry A 2013, 1 (45), 14375-14383.
60. Pan, H. Y.; Zhang, Y. Y.; Pu, H. T.; Chang, Z. H., Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. Journal of Power Sources 2014, 263, 195-202.
61. Gu, X. Z.; Xu, N.; Guo, X. X.; Fang, J. H., Synthesis, proton conductivity and chemical stability of novel sulfonated copolyimides-containing benzimidazole groups for fuel cell applications. High Performance Polymers 2013, 25 (5), 508-517.
62. Woo, Y.; Oh, S. Y.; Kang, Y. S.; Jung, B., Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. Journal of Membrane Science 2003, 220 (1-2), 31-45.
63. Jang, W.; Choi, S.; Lee, S.; Park, S.; Seo, J.; Shul, Y.; Han, H., Acid-doped polyimide electrolyte membranes with pendant benzimidazole groups for fuel cell applications. 2007, 5, 17.
64. Chen, J. C.; Wu, J. A.; Lee, C. Y.; Tsai, M. C.; Chen, K. H., Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. Journal of Membrane Science 2015, 483, 144-154.
65. Genies, C.; Mercier, R.; Sillion, B.; Cornet, N.; Gebel, G.; Pineri, M., Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 2001, 42 (2), 359-373.
66. Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P. J. C. S. R., Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. 2010, 39 (8), 3210-3239.
67. Wang, S.; Zhang, G.; Han, M.; Li, H.; Zhang, Y.; Ni, J.; Ma, W.; Li, M.; Wang, J.; Liu, Z. J. I. J. o. H. E., Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. 2011, 36 (14), 8412-8421.
68. Yang, J. S.; Xu, Y. X.; Liu, P. P.; Gao, L. P.; Che, Q. T.; He, R. H., Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta 2015, 160, 281-287.
69. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. Journal of Membrane Science 2002, 197 (1-2), 231-242.
70. 陳思源, 合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究,台灣科技大學化工系碩士論文. 2013.
71. Kim, T. H.; Kim, S. K.; Lim, T. W.; Lee, J. C., Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science 2008, 323 (2), 362-370.
72. Ou, T. J.; Chen, H. X.; Hu, B. H.; Zheng, H. T.; Li, W. H.; Wang, Y., A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2018, 43 (27), 12337-12345.
73. Yang, J. S.; Li, Q. F.; Cleemann, L. N.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.; He, R. H., Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications. Advanced Energy Materials 2013, 3 (5), 622-630.
74. Li, X.; Chen, X. M.; Benicewicz, B. C., Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). Journal of Power Sources 2013, 243, 796-804.
75. Wang, L.; Liu, Z. R.; Ni, J. P.; Xu, M. Z.; Pan, C. J.; Wang, D. G.; Liu, D. Q.; Wang, L., Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. Journal of Membrane Science 2019, 572, 350-357.
76. Tian, X.; Wang, S.; Li, J. S.; Liu, F. X.; Wang, X.; Chen, H.; Wang, D.; Ni, H. Z.; Wang, Z., Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Applied Surface Science 2019, 465, 332-339.
77. Li, X. B.; Wang, P.; Liu, Z. C.; Peng, J. W.; Shi, C. Y.; Hu, W.; Jiang, Z. H.; Liu, B. J., Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells. Journal of Power Sources 2018, 393, 99-107.
78. Hu, M. S.; Ni, J. P.; Zhang, B. P.; Neelakandan, S.; Wang, L., Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications. Journal of Power Sources 2018, 389, 222-229.

無法下載圖示 全文公開日期 2025/12/07 (校內網路)
全文公開日期 2070/12/07 (校外網路)
全文公開日期 2070/12/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE