簡易檢索 / 詳目顯示

研究生: 曾心瑜
Hsin-yu Tseng
論文名稱: 以高分子輔助法製備雙相磷酸鈣並分析其骨傳導性
Preparation of biphasic calcium phosphate by using polymer-assisted method and analysis of it's osteoconductivity
指導教授: 何明樺
Ming-hua Ho
口試委員: 曾婷芝
Tina T-C Tseng
高震宇
Chen-yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 171
中文關鍵詞: 雙相磷酸鈣氫氧基磷灰石β-磷酸三鈣鈣離子釋放骨傳導性
外文關鍵詞: biphasic calcium phosphate, hydroxyapatite, β-tricalcium phosphate, calcium ion releasing, osteoconductivity
相關次數: 點閱:249下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

雙相磷酸鈣 (BCP) 主要由高穩定性的氫氧基磷灰石 (HA) 和易於降解的β-磷酸三鈣 (β-TCP) 兩相依不同比例組合而成。本實驗利用高分子輔助法製作BCP,藉由改變煅燒溫度及添加PEG控制物性,其物理性質包括表面型態、結晶度、組成、比表面積及鈣離子釋放行為,並使用SEM、FTIR、XRD、ICP及BET進行檢測與分析。
實驗結果顯示,未加入PEG所製成之BCP會較易出現晶粒聚集,且組成中β-TCP比例會隨著煅燒溫度上升而大幅增加。而添加PEG的組別晶粒較為分散,且在高溫煅燒下仍可保有較多根據在PBS緩衝溶液中BCP的鈣離子釋放,初期鈣離子釋放速率會隨BCP裡β-TCP比例增加而上升,但後期鈣離子釋放平衡濃度則是隨之下降。
體外實驗指出,7F2骨母細胞活性及鹼性磷酸酶分泌皆隨著BCP中β-TCP比例增加而提升。這是因為β-TCP可釋放適量的胞外鈣離子濃度,細胞處於該濃度下可促進其活性及初期骨分化。


Biphasic calcium phosphate (BCP) is composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) with different ratios. In this study, BCP is fabricated by novel polymer-assisted method. The physical properties were controlled by varing calcination temperature and by adding PEG. The morphologies, compositions, crystallinity, calcium release and specific surface area of BCP were then analyzed by SEM, FTIR, XRD, ICP and BET.
Without adding PEG, particle aggregation and β-TCP amount increased with calcinations temperature. This was because at high temperature, crystallites was be tended to be aggregated and phase transition from HA to β-TCP was also occurred.
With the addition of PEG, particle dispersed with less aggregation. Although phase transition still happened, HA phase was retained more at high calcinations temperature. This was because PEG would disturb the crystallite aggregation and phase transformation.
From in vitro release, the releasing rate in the beginning was increased but steady concentration of released calcium from BCP was decreased with the amount of β-TCP. Thus, the calcium releasing would be decreased with calcination temperature.
The in vitro results indicated that both of cell viability and ALPase expression increased with β-TCP amounts in BCP. This was because that β-TCP released suitable extracelluar calcium ions to enhance cell viability and osteogenic differentiation. On the contrary, the specific surface area and crystallinity were not so effective on cultured osteoblasts.

摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 方程式目錄 專有名詞及縮寫 第一章 緒論 第二章 文獻回顧 2.1硬骨組織工程 2.2骨組織簡介 2.3骨填補材料 2.3.1自然骨填補材料 2.3.2人工合成骨填補材料 2.4磷酸鈣鹽類骨填充物 2.4.1 氫氧基磷灰石(HA) 2.4.2磷酸三鈣(β-TCP) 2.4.3雙相磷酸鈣(BCP) 2.4.4磷酸鈣之降解與鈣離子釋出 2.4.5鈣離子對骨細胞效應 2.5骨母細胞分化標記 第三章 實驗材料與方法 3.1實驗藥品 3.2實驗儀器 3.3實驗步驟 3.3.1磷酸鈣粉末製備 3.4磷酸鈣粉末物性分析 3.4.1表面型態分析(SEM) 3.4.2 X-ray 繞射光譜儀分析(XRD) 3.4.2.1 半定量分析原理 3.4.2.2 結晶度分析原理 3.4.2.3 晶粒尺寸計算 3.4.3傅立葉轉換紅外線光譜儀分析(FTIR) 3.4.4鈣磷比分析 3.4.5比表面積分析(BET) 3.4.6鈣離子釋放實驗 3.5體外細胞實驗 3.5.1細胞來源 3.5.2細胞培養 3.5.3細胞冷凍保存 3.5.4細胞解凍及培養 3.5.5細胞計數 3.5.6粒線體活性測試 3.5.7鹼性磷酸酶測試 3.5.8細胞蛋白質濃度測定 第四章 實驗結果與討論 4.1磷酸鈣粉末物性分析 4.1.1 表面型態觀察(SEM) 4.1.2傅立葉轉換紅外線光譜分析(FTIR) 4.1.3 X-ray 繞射光譜儀分析(XRD) 4.1.3.1半定量分析(Semi-quantitative analysis) 4.1.3.2結晶度分析(Crystallinity) 4.1.3.3晶粒尺寸(Crystallite size) 4.1.4鈣磷比(Ca/P ratio) 4.1.5比表面積分析(BET) 4.1.6 鈣離子釋放 4.1.6.1以水為溶劑之鈣離子釋放 4.1.6.2以PBS為溶劑之鈣離子釋放 4.2骨母細胞種植於磷酸鈣粉末之細胞活性測試 4.3骨母細胞種植於磷酸鈣粉末之鹼性磷酸酶表現 第五章 結論 文獻 附錄 附錄A利用DIFFRAC EVA 2.0軟體進行半定量分析 附錄B鹼性磷酸酶檢量線

Zhang, J.Z., L. Guo, and C.J. Fischer, Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi sea and the bering sea: Importance of detrital apatite. Aquatic Geochemistry, 2010. 16(3): p. 353-371.
Davison, K.S., et al., Bone Strength: The Whole Is Greater Than the Sum of Its Parts. Seminars in Arthritis and Rheumatism, 2006. 36(1): p. 22-31.
Mine, A., et al., TEM characterization of a silorane composite bonded to enamel/dentin. Dental Materials, 2010. 26(6): p. 524-532.
Moreno, E.C. and T. Aoba, Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcified Tissue International, 1991. 49(1): p. 6-13.
Fung, G.S.K., et al., Differentiation of kidney stones using dual-energy CT with and without a tin filter. American Journal of Roentgenology, 2012. 198(6): p. 1380-1386.
Yoshikawa, H. and A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics. Journal of Artificial Organs, 2005. 8(3): p. 131-136.
Chazono, M., et al., Bone formation and bioresorption after implantation of injectable β-tricalcium phosphate granules–hyaluronate complex in rabbit bone defects. Journal of Biomedical Materials Research Part A, 2004. 70A(4): p. 542-549.
Itoh, S., et al., The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. Journal of Biomedical Materials Research, 2001. 54(3): p. 445-453.
Knaack, D., et al., Resorbable calcium phosphate bone substitute. Journal of Biomedical Materials Research, 1998. 43(4): p. 399-409.
邵子齡,郭欣杰,黃國光, 雙相磷酸鈣生醫陶瓷在牙周再生與骨再生的運用─文獻回顧. 中華民國家庭牙醫學雜誌, 2011. 6(2): p. 4-12.
Thamaraiselvi, T. and S. Rajeswari, Biological evaluation of bioceramic materials-a review. Carbon, 2004. 24(31): p. 172.
Lanza, R., R. Langer, and J.P. Vacanti, Principles of tissue engineering. 2011: Academic press.
Lanza, R.P., R. Langer andJ. P. Vacanti., Principles of Tissue Engineering. 2000, San Diego: CA: Academic Press.
Hollinger, J.O., An introduction to biomaterials. 2 ed. 2012, U. S.: CRC Press.
Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004. 4(8): p. 743-765.
U. Meyer, H.P.W., Bone and Cartilage Engineering. 2006, Berlin; New York: springer.
Marolt, D., M. Knezevic, and G.V. Novakovic, Bone tissue engineering with human stem cells. Stem Cell Research and Therapy, 2010. 1(2).
MOHAN, S. and D.J. BAYLINK, Bone Growth Factors. Clinical Orthopaedics and Related Research, 1991. 263: p. 30-48.
Linkhart, T.A., S. Mohan, and D.J. Baylink, Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone, 1996. 19(1, Supplement 1): p. S1-S12.
Lieberman, J.R., A. Daluiski, and T.A. Einhorn, The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications. The Journal of Bone & Joint Surgery, 2002. 84(6): p. 1032-1044.
張至宏 and 林峰輝, 源源不絕的骨骼銀行─談硬骨組織工程. 科學發展, 2002(356): p. 18-21.
葉麗仙, LED光照刺激對人類牙齦纖維母細胞的影響, in 化學工程系2010, 國立台灣科技大學
高才,林康平,林峰輝,陳家進, 生物醫學工程導論. 2008, 台中市: 滄海書局.
Hill, P.A., Bone remodelling. Journal of Orthodontics, 1998. 25(2): p. 101-7.
Mackie, E.J., Osteoblasts: Novel roles in orchestration of skeletal architecture. International Journal of Biochemistry and Cell Biology, 2003. 35(9): p. 1301-1305.
Roodman, G.D., Cell biology of the osteoclast. Experimental Hematology, 1999. 27(8): p. 1229-1241.
Bonewald, L.F., The amazing osteocyte. Journal of Bone and Mineral Research, 2011. 26(2): p. 229-238.
Vallet-Regí, M. and J.M. González-Calbet, Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004. 32(1-2): p. 1-31.
Eichler, J., P. Hutzschenreuter, and I. Rosenbladt, The behavior of biological parameters in experimental hyperthermia]. Der Anaesthesist, 1969. 18(7): p. 210.
Bauer, T.W. and G.F. Muschler, Bone Graft Materials: An Overview of the Basic Science. Clinical Orthopaedics and Related Research, 2000. 371: p. 10-27.
Chevalier, J. and L. Gremillard, Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society, 2009. 29(7): p. 1245-1255.
Boccaccini, A.R., et al., Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics. Faraday discussions, 2007. 136: p. 27-44.
Cao, W. and L.L. Hench, Bioactive materials. Ceramics international, 1996. 22(6): p. 493-507.
Benaqqa, C., et al., Slow crack growth behaviour of hydroxyapatite ceramics. Biomaterials, 2005. 26(31): p. 6106-6112.
Lu, J., et al., The biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of biomedical materials research, 2002. 63(4): p. 408-412.
Albee, F.H., Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Annals of surgery, 1920. 71(1): p. 32.
LeGeros, R.Z., Formation and transformation of calcium phosphates: Relevance to vascular calcification. Zeitschrift fur Kardiologie, 2001. 90(SUPPL. 3): p. 116-124.
Nilsson, M., et al., Factors influencing the compressive strength of an injectable calcium sulfate–hydroxyapatite cement. Journal of Materials Science: Materials in Medicine, 2003. 14(5): p. 399-404.
Raynaud, S., et al., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 2002. 23(4): p. 1065-1072.
Raynaud, S., E. Champion, and D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials, 2002. 23(4): p. 1073-1080.
Carayon, M. and J. Lacout, Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. Journal of Solid State Chemistry, 2003. 172(2): p. 339-350.
Bikramjit Basu, D.S.K., Ashok Kumar, Advanced Biomaterials. Fundamentals of Hydroxyapatite and related calcium phosphates, ed. A.I. Racquel Zapanta LeGeros, Kunio Ishikawa, Toshiro Sakae, John P. LeGeros. 2009, New Jersey, USA: John Wiley & Sons, Inc. 19-52.
Dorozhkin, S., Calcium Orthophosphates: Applications in Nature, Biology, and Medicine. 2012, Singapore: Pan Stanford Publishing Pte. Ltd.
Chow, L.C., Development of self-setting calcium phosphate cements. Journal of the Ceramic Society of Japan. International ed., 1991. 99(10): p. 927-936.
Uskoković, V. and D.P. Uskoković, Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011. 96 B(1): p. 152-191.
Young, R. and D. Holcomb, Variability of hydroxyapatite preparations. Calcified tissue international, 1982. 34: p. S17.
Zhang, X. and K.S. Vecchio, Hydrothermal synthesis of hydroxyapatite rods. Journal of Crystal Growth, 2007. 308(1): p. 133-140.
Han, Y., et al., Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method. Materials Research Bulletin, 2004. 39(1): p. 25-32.
Bernard, L., et al., Preparation of hydroxyapatite by neutralization at low temperature—influence of purity of the raw material. Powder technology, 1999. 103(1): p. 19-25.
Liu, J., et al., Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chemical physics letters, 2004. 396(4): p. 429-432.
Tseng, Y.-H., et al., Polymer-assisted synthesis of hydroxyapatite nanoparticle. Materials Science and Engineering: C, 2009. 29(3): p. 819-822.
Okada, T., Complexation of poly(oxyethylene) in analytical chemistry. A review. Analyst, 1993. 118(8): p. 959-971.
Pallela, R., J. Venkatesan, and S.K. Kim, Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone. Ceramics International, 2011. 37(8): p. 3489-3497.
Yoshikawa, H., et al., Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of The Royal Society Interface, 2009. 6(Suppl 3): p. S341-S348.
Krajewski, A. and A. Ravaglioli, A physico-chemical study of crystal growth of hydroxyapatite bioceramic. Biomaterials, 1981. 2(2): p. 105-111.
Jones, F.H., Teeth and bones: applications of surface science to dental materials and related biomaterials. Surface Science Reports, 2001. 42(3–5): p. 75-205.
Yamada, S., et al., Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials, 1997. 18(15): p. 1037-1041.
Yuan, H., et al., A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. Journal of Materials Science: Materials in Medicine, 2002. 13(12): p. 1271-1275.
Wiltfang, J., et al., Degradation characteristics of α and β tri‐calcium‐phosphate (TCP) in minipigs. Journal of biomedical materials research, 2002. 63(2): p. 115-121.
Branemark, P.-I., Osseointegration and its experimental background. The Journal of prosthetic dentistry, 1983. 50(3): p. 399-410.
Garg, A.K., Bone biology, harvesting, and grafting for dental implants: rationale and clinical applications. 2004: Quintessence Publishing Company.
Van der Stok, J., et al., Bone substitutes in the Netherlands–A systematic literature review. Acta biomaterialia, 2011. 7(2): p. 739-750.
Ravaglioli, A. and A. Krajewski, Bioceramics. 1992: Springer.
Ellinger, R.F., E.B. Nery, and K.L. Lynch, Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. The International journal of periodontics & restorative dentistry, 1986. 6(3): p. 22-33.
Nery, E.B., et al., A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. Journal of Periodontology, 1990. 61(12): p. 737-744.
Petrov, O., et al., Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics. Materials letters, 2001. 48(3): p. 162-167.
Kiba, W., et al., Efficacy of polyphasic calcium phosphates as a direct pulp capping material. Journal of dentistry, 2010. 38(10): p. 828-837.
Arinzeh, T.L., et al., A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials, 2005. 26(17): p. 3631-3638.
Byung-Dong Hahn, D.-S.P., Jong-Jin Choi, Jungho Ryu, Woon-Ha Yoon, and Byoung-Kuk Lee, Effect of the HA/TCP Raio on the Biological Performance of Calcium Phosphate Ceramic Coatings Fabricated by a Room-Temperature Powder Sparay in Vacuum. The American Ceramic Society, 2009. 92(4): p. 793-799.
Shuai, C., et al., Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Materials Characterization, 2013. 77: p. 23-31.
Daculsi, G., et al., Current state of the art of biphasic calcium phosphate bioceramics. Journal of Materials Science: Materials in Medicine, 2003. 14(3): p. 195-200.
Guha, A.K., et al., Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids and Surfaces B: Biointerfaces, 2009. 73(1): p. 146-151.
Schumacher, M., et al., Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. Journal of Materials Science: Materials in Medicine, 2010. 21(11): p. 3039-3048.
Tanimoto, Y., et al., Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on response in vitro. Journal of Hard Tissue Biology, 2009. 18(2): p. 71-76.
Zhu, X., et al., Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 82(1): p. 65-73.
Banerjee, S.S., A. Bandyopadhyay, and S. Bose, Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery. Advanced Engineering Materials, 2010. 12(5): p. B148-B155.
Zhu, X., et al., Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta biomaterialia, 2009. 5(4): p. 1311-1318.
Ghanaati, S., et al., The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomedical Materials, 2012. 7(1): p. 015005.
Jensen, S.S., et al., Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 90B(1): p. 171-181.
Ye, F., et al., A long-term evaluation of osteoinductive HA/β-TCP ceramics in vivo: 4.5 years study in pigs. Journal of Materials Science: Materials in Medicine, 2007. 18(11): p. 2173-2178.
Daculsi, G., et al., Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. Journal of biomedical materials research, 1990. 24(3): p. 379-396.
Lu, J., et al., The biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of Biomedical Materials Research, 2002. 63(4): p. 408-412.
Vereecke, G. and J. Lemaître, Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O. Journal of Crystal Growth, 1990. 104(4): p. 820-832.
Ishikawa, K., Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Materials, 2010. 3(2): p. 1138-1155.
Liu, Y.K., et al., The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: Implication for bone tissue engineering. Biomedical Materials, 2009. 4(2).
Humphreys, T., Chemical dissolution and< i> in vitro</i> reconstruction of sponge cell adhesions: I. Isolation and functional demonstration of the components involved. Developmental Biology, 1963. 8(1): p. 27-47.
Takeichi, M. and T. Okada, Roles of magnesium and calcium ions in cell-to-substrate adhesion. Experimental cell research, 1972. 74(1): p. 51-60.
Feng, B., et al., Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials, 2004. 25(17): p. 3421-3428.
Mizuno, M. and Y. Banzai, Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. International Endodontic Journal, 2008. 41(11): p. 933-938.
Silver, I., R. Murrills, and D. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Experimental cell research, 1988. 175(2): p. 266-276.
An, S., et al., Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: Implications for pulp capping materials. Journal of Materials Science: Materials in Medicine, 2012. 23(3): p. 789-795.
Nakamura, S., et al., Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Engineering - Part A, 2010. 16(8): p. 2467-2473.
Lorget, F., et al., High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochemical and biophysical research communications, 2000. 268(3): p. 899-903.
楊志明, 組織工程. 2005, 台北市: 九州圖書文物有限公司.
Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiological Reviews, 1996. 76(2): p. 593-629.
Alan Stevens, J.S.L., 人體組織學. 2007, 新北市, 中華民國: 藝軒圖書出版社.
Bish, D.L. and J.E. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. The American mineralogist, 1993. 78(9-10): p. 932-940.
王靜薇, 利用臭氧活化固定柚皮苷於基材表面, 2012.
Juang, H.Y. and M.H. Hon, Effect of calcination on sintering of hydroxyapatite. Biomaterials, 1996. 17(21): p. 2059-2064.
. Rahaman, M.N., Sintering of ceramics. 2008: CRC press Boca Raton:.
Champion, E., Sintering of calcium phosphate bioceramics. Acta Biomaterialia, 2013. 9(4): p. 5855-5875.
Gibson, I.R., et al., Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. Journal of Materials Science: Materials in Medicine, 2000. 11(12): p. 799-804.
Kwon, S.-H., et al., Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. Journal of the European Ceramic Society, 2003. 23(7): p. 1039-1045.
Kalita, S.J. and S. Verma, Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization. Materials Science and Engineering: C, 2010. 30(2): p. 295-303.
Hillery, A.M., A.W. Lloyd, and J. Swarbrick, Drug delivery and targeting: for pharmacists and pharmaceutical scientists. 2001: Taylor & Francis.
Dorozhkin, S.V., Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomaterialia, 2012. 8(3): p. 963-977.
Yasuda, H.Y., et al., Effect of β-TCP size on bone-like layer growth and adhesion of osteoblast-like cells in hydroxyapatite/β-TCP composites. Materials Transactions, 2006. 47(9): p. 2368-2372.
Maeno, S., et al., The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 2005. 26(23): p. 4847-4855.

QR CODE