簡易檢索 / 詳目顯示

研究生: 鄭兆廷
Chao-Ting Cheng
論文名稱: 應用於金屬機殼筆電開槽孔式多頻段行動通訊天線設計
Open-Ended Slot Antenna Designs for Laptop with Metal Enclosures
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 馬自莊
Tzyh-Ghuang Ma
鍾明桉
Ming-An Chung
侯元昌
Yuan-Chang Hou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 88
中文關鍵詞: LTE5G FR1立體式開槽孔天線共構天線筆電天線
外文關鍵詞: LTE, 5G FR1, open-ended slot antenna, integrated antenna, notebook antenna
相關次數: 點閱:295下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了兩款適用於筆電金屬邊框環境的天線,可應用於 LTE 頻段,天線
    架構簡單且容易製造,兩款天線皆為在未使用 LC 元件的情況下,達成良好的寬頻表
    現,符合市場筆電天線設計的需求。
    論文中的第一款天線為應用於筆電金屬邊框環境之 LTE 多頻立體式開槽孔天線,
    天線尺寸為 83.2 × 10 × 6 mm3。天線主體為一個雙端路開槽孔的架構,可以貢獻一個
    二分之一波長的基礎模態及其高階模態,並將饋線彎折 45 度使其與槽孔形成一單端
    開路的結構,進而貢獻一個四分之一波長的模態,再藉由加粗饋線調整整體的阻抗匹
    配,使其能夠大致涵蓋 LTE 高頻段及 5G FR1 的頻段。本架構利用與邊框以及 C 件共
    構的方式,可以有效節省筆電內部的空間配置,也因未使用主動元件,故較不容易受
    高頻訊號影響。
    論文提出的第二款天線同樣為應用於筆電金屬邊框環境之 LTE 多頻立體式開槽
    孔天線的設計,總體天線尺寸為 80 × 6 × 6 mm3。天線主體為一個單端路開槽孔的架
    構,並且擁有兩段的切換機制,第一次的切換係藉由射頻開關來達到較大頻段的轉換,
    使其基本模態與高階模態能夠大致涵蓋 LTE 低、高頻段以及 N77 的頻段範圍,第二
    次切換的機制則是提出一個具創新性的天線負載結構,利用調整液態負載的溫度來改
    變其相對介電係數,進而達到頻段重置的效果,以去涵蓋餘下的 LTE 低頻頻段。


    This thesis proposes two antenna designs that are suitable for the metal frame
    environment of laptops.The applicable operation bands are LTE bands. The antenna structure is simple and easy to fabricate.Both antennas have good bandwidth performance without using lumped elements, which meets the commercial product need.
    The first antenna is an LTE multi-band open slot antenna for laptops with metal
    frames.The antenna sizes are of 31 × 10 × 6 mm3. The antenna configuration is a dual-end open slot, which has a half-wavelength fundamental mode and higher-order modes. The feed line is bent by 45 degrees to form a single-ended open slot, which contributes a quarterwavelength mode. By adjusting the impedance matching of the antenna with a widened feed line, it covers the LTE High-Band and 5G FR1 band. This structure can be integrated with the frame and the laptop base, which can effectively save the required antenna volumn and is less susceptible to interference due to not using active components.The second antenna proposed is also dedicated to LTE bands.It’s in a 3D configuration and is applicable to laptop’s metal frame. The overall antenna sizes are 80 × 6 × 6 mm3. The main body of the antenna is a single-ended slot and has a two-stage frequency reconfiguring mechanism. The first method is using an RF switch to achieve a greater frequency adjustment so that its basic mode and high-order mode can roughly cover the frequency ranges of LTE and N77 bands.The second adjusting mechanism is applying a temperature-sensitive dielectric loading.By changing the liquid loading temperature, the effective relative permittivity is varied so that the frequency band can be modified to cover the remaining LTE low bands.

    摘要 I Abstract III 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻分析 2 1.3 論文組織 3 第二章 應用於筆電金屬邊框之LTE多頻立體式開槽孔天線 5 2.1 研究動機 5 2.2 LTE多頻立體式開槽孔天線設計 6 a. 天線架構與環境說明 6 b. LTE多頻立體式開槽孔天線設計 8 c. LTE多頻立體式開槽孔天線設計參數分析 15 2.3 LTE多頻立體式開槽孔天線實作與效能驗證 21 2.4 小結 26 第三章 應用於筆電金屬邊框之LTE多頻段可重置立體式開槽孔天線 27 3.1 研究動機 27 3.2 LTE多頻立體式開槽孔天線設計 28 a. 天線架構與環境說明 28 b. LTE多頻立體式開槽孔天線設計 30 c. LTE多頻立體式開槽孔天線參數分析 33 3.3 液體溫度調變天線有效電氣長度分析 36 a. 材料特性說明 37 b. 調整天線有效電氣長度 39 3.4 LTE多頻立體式開槽孔天線實作與效能驗證 43 3.5 筆電環境下之LTE多頻立體式開槽孔天線設計 50 a. 天線設計環境說明 50 b. 筆電環境下之LTE多頻立體式開槽孔天線實作與效能驗證 56 3.6 小結 64 第四章 結論 66 參考文獻 69 附錄一 75

    [1] H.-T. Hu, F.-C. Chen, and Q.-X. Chu, “A wideband U-shaped slot antenna and its
    application in MIMO terminals,” IEEE Antennas and Wireless Propagation
    Letters, vol. 15, pp. 508-511, 2016.
    [2] K.-L. Wong, W.-J. Chen, L.-C. Chou, and M.-R. Hsu, “Bandwidth enhancement
    of the small-size internal laptop computer antenna using a parasitic open slot for
    penta-band WWAN operation,” IEEE Transactions on Antennas and Propagation,
    vol. 58, no. 10, pp. 3431-3435, Oct. 2010.
    [3] S.-C. Chen, P.-W. Wu, and C.G. Hsu, “Integrated MIMO slot antenna on laptop
    computer for eight-band LTE/WWAN operation,” IEEE Transactions on Antennas
    and Propagation, vol. 66, no. 1, pp. 105-114, Jan. 2018.
    [4] S.-W. Su, Y.-T. Hsieh, and S.-C. Chen, “Integration of very-low-profile slot
    antenna into notebook metal cover with narrow bezel,” 2017 International
    Symposium on Antennas and Propagation(ISAP), pp. 1-2, 2017.
    [5] S.-C. Chen and M.-C. Hsu, “LTE MIMO closed slot antenna system for laptops
    with a metal cover,” IEEE ACCESS, vol.7, pp. 28973-28981, Jul. 2019.
    [6] A. Boldaji and M. A. Antoniades, “Method of decoupling and independently
    tuning the second mode of a microstrip-fed slot antenna using series inductive
    loading,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1017-
    1020, 2013.
    [7] K.-L. Wong and L.-C. Lee, “Multiband printed monopole slot antenna for WWAN
    operation in the laptop computer,” IEEE Transactions on Antennas and
    Propagation, vol. 57, no. 2, pp. 324-330, Feb. 2009.
    [8] J. Park, J. Choi, J.-Y. Park, and Y.-S. Kim, “Study of a T-shaped slot with a
    capacitor for high isolation between MIMO antennas,” IEEE Antennas and
    Wireless Propagation Letters, vol. 11, pp. 1541-1544, 2012.
    [9] K.-L. Wong, H.-J. Chang, C.-Y. Wang, and S.-Y. Wang, “Very-low-profile
    grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body
    antenna application,” IEEE Antennas and Wireless Propagation Letters, vol. 19,
    no. 1, Jan. 2020.
    [10] K.-H. Chen, S.-J. Wu, C.-H. Kang, C.-K. Chan, and J.-H. Tarng, “A frequency
    reconfigurable slot antenna using pin diodes,” 2009 Asia Pacific Microwave
    Conference, pp. 1930-1933, 2009.
    [11] Y.-Y. Lin, C.-L. Liao, T.-H. Hsieh, and W.-J. Liao, “A novel beam-switching array
    antenna using series-fed slots with pin diodes,” IEEE Antennas and Wireless
    Propagation Letters, vol. 16, pp. 1393-1396, 2017.
    [12] J.-H. Chou, J.-F. Chang, D.-B. Lin, H.-J. Li, and T.-L. Wu, “A compact loop-slot
    mode combination antenna for ultra-thin tablet computer with metallic bottom
    cover,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 746-749,
    2014.
    [13] S.-C. Chen, C.-K. Lee, and S.-M. Li, “Compact multi-input multi-output loop
    antenna system for 5G laptops,” 2021 International Symposium on Antennas and
    Propagation(ISAP), pp. 1-2, 2021
    [14] S.-W. Su, C.-T. Lee, and S.-C. Chen, “Compact, printed, tri-band loop antenna
    with capacitively-driven feed and end-loaded inductor for notebook computer
    applications,” IEEE ACCESS, vol. 6, pp. 6692-6699, Jan. 2018.
    [15] J. Choi, W. Hwang, C. You, B. Jung, and W. Hong, “Four-element reconfigurable
    coupled loop MIMO antenna featuring LTE full-band operation for metallicrimmed smartphone,” IEEE Transactions on Antennas and Propagation, vol. 67,
    no. 1, pp. 99-107, Jan. 2019.
    [16] K.-L. Wong and C.-Y. Tsai, “Half-loop frame antenna for the LTE metal-casing
    tablet device,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 1,
    pp. 71-81, Jan. 2017.
    [17] C.-W. Chiu and Y.-J. Chi, “Printed loop antenna with a U-shaped tuning element
    for hepta-band laptop applications,” IEEE Transactions on Antennas and
    Propagation, vol. 58, no. 11, pp. 3467-3470, Nov. 2010.
    [18] C.-L. Hu, C.-F. Yang, and S.-T. Lin, “A compact inverted-F antenna to be
    embedded in ultra-thin laptop computer for LTE/WWAN/WiMAX/WLAN
    applications,” 2011 IEEE International Symposium on Antennas and Propagation
    (APSURSI), pp. 426-429, 2011.
    [19] J.-Y. Deng, J.-Y. Li, L. Zhao, and L.-X. Guo, “A dual-band inverted-F MIMO
    antenna with enhanced isolation for WLAN applications,” IEEE Antennas and
    Wireless Propagation Letters, vol. 16, pp. 2270-2273, 2017.
    [20] S.-C. Chen, C.-W. Liou, C.-G. Hsu, and J.-Y. Sze, “An eight-band WWAN/LTE
    by-hinge printed inverted-F antenna on laptop computer,” 2018 International
    Symposium on Antennas and Propagation(ISAP), pp. 1-2, 2018.
    [21] S.-W. Su, C.-T. Lee, and Y.-W. Hsiao, “Compact two-inverted-F-antenna system
    with highly integrated π-shaped decoupling structure,” IEEE Transactions on
    Antennas and Propagation, vol. 67, no. 9, pp. 6182-6186,Sep. 2019.
    [22] K.-L. Wong and C.-Yu. Tsai, “IFA-based metal-frame antenna without ground
    clearance for the LTE/WWAN operation in the metal-casing tablet computer,”
    IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 53-60, Jan.
    2016.
    [23] W.-S. Chen, Y.-L. Chang, and M.-T. Wu, “MIMO IFA antennas for laptop
    computer application at WLAN/5G C-band operation,” 2019 Cross Strait QuadRegional Radio Science and Wireless Technology Conference (CSQRWC), pp. 1-
    3, 2019.
    [24] J.-H. Xun, L.-F. Shi, W.-R. Liu, G.-X. Liu, and S. Chen, “Compact dual-band
    decoupling structure for improving mutual coupling of closely placed PIFAs,”
    IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1985-1989, 2017.
    [25] T.-W. Kang and K.-L. Wong, “Coupled-fed PIFA with a loop feed for 8-band
    internal LTE/WWAN laptop computer antenna,” 2010 IEEE Antennas and
    Propagation Society International Symposium(APSIS), pp. 1-4, 2010.
    [26] R. Bhattacharya, R. Garg, and T.K. Bhattacharyya, “Design of a PIFA-driven
    compact yagi-type pattern diversity antenna for handheld devices,” IEEE
    Antennas and Wireless Propagation Letters, vol. 15, pp. 255-258, 2016.
    [27] S.-W. Su, F.-H. Chu, and D. Lin, “Internal two-PIFA system with comparable
    polarization radiation for metal back cover tablet,” 2014 International Symposium
    on Antennas and Propagation Conference Proceedings(ISAPCP), pp. 1-2, 2014.
    [28] C.-T. Lee and K.-L. Wong, “Small-size printed coupled-fed PIFA with an
    embedded band-notching slit for internal WLANIWiMAX laptop computer
    antenna,” 2009 IEEE Antennas and Propagation Society International Symposium,
    pp. 1-4, 2009.
    [29] C. Zhang, S. Yang, S. El-Ghazaly, A. E. Fathy, and V. K. Nair, “A low-profile
    branched monopole laptop reconfigurable multiband antenna for wireless
    applications,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 216-
    219, 2009.
    [30] Q. Luo, J. R. Pereira, and H. M. Salgado, “Compact printed monopole antenna
    with chip inductor for WLAN,” IEEE Antennas and Wireless Propagation Letters,
    vol. 10, pp.880-883, 2011.
    [31] S.-C. Chen, Y.-T. Lee, C.-W. Liou, and P.-W. Wu, “Monopole antenna integrated
    with keyboard ground plane in a laptop computer,” 2016 IEEE Asia-Pacific
    Conference on Antennas and Propagation(APCAP), pp. 115-116, 2016.
    [32] T.-W. Kang, K.-L. Wong, L.-C. Chou, and M.-R. Hsu, “Coupled-fed shorted
    monopole with a radiating feed structure for eight-band LTE/WWAN operation in
    the laptop computer,” IEEE Transactions on Antennas and Propagation, vol. 59,
    no. 2, pp. 674-679, Feb. 2011.
    [33] H.-Y. Chien, C.-Y. D. Sim, and C.-H. Lee, “Dual-band meander monopole antenna
    for WLAN operation in laptop computer,” IEEE Antennas and Wireless
    Propagation Letters, vol. 12, pp. 694-697, 2013.
    [34] S.-C. Chen and Y.-C. Tsou, “LTE/WWAN monopole antenna for laptop computer
    applications,” 2016 IEEE/ACES International Conference on Wireless
    Information Technology and Systems (ICWITS) and Applied Computational
    Electromagnetics (ACES), pp.1-2, 2016.
    [35] Z.-X. Xia, K.-W. Leung , M. W. K. Lee, and N. Yang, “Miniature dual-band
    meander-line monopole chip antenna with independent band control,” IEEE
    Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1873-1877, Sep.
    2019.
    [36] C.-Y.-D. Sim, C.-C. Chen, X.-Y. Zhang, Y.-L. Lee, and C.-Y. Chiang, “Very smallsize uniplanar printed monopole antenna for dual-band WLAN laptop computer
    applications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 6, pp.
    2916-2922, Jun. 2017.
    [37] Y.-M. Pan and S.-Y. Zheng, “A compact quasi-isotropic shorted patch antenna,”
    IEEE ACCESS, vol.5, pp. 2771-2778, Jan. 2017.
    [38] Y. Ge, K. P. Esselle, and T. S. Bird, “E-shaped patch antennas for high-speed
    wireless networks,” IEEE Transactions on Antennas and Propagation, vol. 52, no.
    12, pp. 3213-3219, Dec. 2004.
    [39] J. Guterman, A. A. Moreira, and C. Peixeiro, “Integration of omnidirectional
    wrapped microstrip antennas into laptops,” IEEE Antennas and Wireless
    Propagation Letters, vol. 5, pp. 141-144, 2006.
    [40] J. Guterman, A. A. Moreira, C. Peixeiro, and Y. Rahmat-Samii, “Multi-element
    arrangements of back-to-back E-shaped patches for MIMO-enabled laptops,”
    2008 Asia-Pacific Microwave Conference(APMC), pp. 1-4, 2008.
    [41] L.-C. Chou, K.-L. Wong, and C.-H. Kuo, “A small-size internal dual-band metalstrip antenna for 2.4/5 GHz WLAN operation in the laptop computer,” 2008 IEEE
    Antennas and Propagation Society International Symposium(APSIS),pp. 1-4, 2008.
    [42] Y. Dong, J. Choi, and T. Itoh, “Folded strip/slot antenna with extended bandwidth
    for WLAN application,” IEEE Antennas and Wireless Propagation Letters, vol.
    16, pp. 673-676, 2017.
    [43] T.-W. Kang and K.-L. Wong, “Isolation improvement of WLAN internal laptop
    computer antennas using dual-band strip resonator,” 2009 Asia Pacific Microwave
    Conference(APMC), pp. 2478-2481, 2009.
    [44] M. Y. Omimisi, S. G. Abdu, T. Ikyumbur, and E. C. Hemba, “Frequency and
    temperature effect on dielectric properties of acetone and dimethylformamide,”
    Physical Science International Journal, pp. 1-8, Sep. 2016.
    [45] A. Singh, G. R. Nair, P. Liplap, Y. Gariepy, V. Orsat, and V. Raghavan, “Effect of
    dielectric properties of a solvent-water mixture used in microwave-assisted
    extraction of antioxidants from potato peels,” OPEN ACCESS, pp. 99-113, Feb.
    2014.
    [46] 宋德賢。加權反射係數總合法輔助之雷達匿蹤截面抑制諧振吸波器設計。碩
    士論文,國立臺灣科技大學電機工程系,2020。

    QR CODE