簡易檢索 / 詳目顯示

研究生: 張廷宇
Ting-Yu Chang
論文名稱: 玻璃纖維蜂窩巢複合材料之切削理論與實務研究
Machining of glass fiber honeycomb composites in theory and practices
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 蔡宏營
Hung-Yin Tsai
林原慶
Yuan-Ching Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 玻璃纖維蜂窩巢複合材料鑽石鍍層刀具高速切削剪切成型繞切加工切削力學模型加工表面完整性多指標最佳化
外文關鍵詞: Glass fiber honeycomb composite, Diamond coated cutting tool, Trimming, Routing, High speed cutting, Cutting mechanics, Machined surface integrity, Multi-objective optimization
相關次數: 點閱:401下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

玻璃纖維蜂窩巢複合材料具低密度(0.192 g/cm3)與三軸向非等性之剛性模數(0.19–1.79 GPa),因此,廣泛用於航太和汽車產業之耐撞擊(crashworthiness)設計。於常態負載時,蜂窩巢結構之W-T與L-T平面可以乘載荷重;當衝擊產生時,蜂窩巢結構之L-W平面可提供減震和吸收能量之機能。雖然如此,玻璃纖維蜂窩巢複合材料之六角結構設計與幾何之不連續性(discontinuity),造成切削之振動,加工後尺寸精度變動、加工面之纖維扯出(pulled out)與蜂巢巢壁撕裂(tearing)。本研究建立之切削力學模型,可以預測切削力之變化。並配合實驗工作,以鑽石鍍層之分割螺旋刃與交叉複斜刃繞切刀具,操作切削速度(100–300 m/min)與進給率(0.2–1.0 mm/rev),進行驗證。實驗結果顯示,刀具之進給率與刀具幾何為影響切削力與切削溫度之顯著因子。其物理機制為,當巢壁厚與刀具直徑比值(R_{t/D})最大時,產生波動峰值(spiky wave)切削力。而高切削速使得剪力角(\emptyset_n)提高,產生絕熱剪切(adiabatic shearing),造成切削力與切削溫度之下降。當操作高切削速度配合高進給率,可降低切削力並增加剪應變率,進而降低材料之表面粗糙度。當以統計方法過濾、辨識並移除實驗數據之離群點,可擬合切削力模型,並得模型精度~88.17%。再經由多指標最佳化模型可建議同時得到切削力、切削熱與表面粗糙度之適切結果。加工表面之形貌與顯微組織,裂縫成長機制與切削條件之關聯皆已討論。


The glass fiber honeycomb composite is characterized with low density (0.192 g/cm3) and a wide range of elastic modulus (0.19–1.79 GPa) due to the hexagonal structure in the cell. Under a normal load, the W-T and L-T planes can steadily be absorbed and redistributed by the load. When impact occurs, the L-W plane provides advantages of shock absorption and energy dissipation, making this material widely used in the crashworthiness design of the aerospace and automotive industries. Nonetheless, the hexagonal structure design and geometric discontinuity of the glass fiber honeycomb composite can hinder the machining process due to the unbalanced cutting forces in each transient. Hence, vibration-induced variations in cutting force, poor dimensional accuracy and degradation of the machined surface integrity are resulted. The mechanics established in this study can predict the cutting force in orthogonal, oblique and dual-oblique cutting actions. In conjunction with the experimental work, the nicked helical-flute router and the cross-flute router coupling with the cutting speed (100–300 m/min) and feed rate (0.2–1.0 mm/rev) are used to examined the effects on the cutting forces, cutting temperature and machined surface integrity as well as the fracture mechanisms in the fibres. Experimental results show that the feed rate and tool geometry are significant factors affecting cutting force and cutting temperature. When the ratio of wall thickness to tool diameter (R_{t/D}) is maximised, it produces a spikey wave and whereby increasing the cutting forces. The high cutting speed increases the shear angle (\emptyset_n) and generates adiabatic shearing, which resulting in a decrease in cutting force and cutting temperature. The high feed rate combined with the high cutting speed reduces the cutting force and increases the shear strain rate, thereby reducing the surface roughness of the material. When statistical methods of data filtering and processing, identification and removal of outliers from experimental data are conducted. In the fitting of the analytical models, the accuracy of the cutting forces can be obtained (R2~88.17%). In the multi-objective optimization, the preferable parameter sets simultaneously obtain the optimums of cutting forces, cutting temperature and surface roughness. The morphology and microstructure of the machined surface, the relationship between the cutting conditions and crack propagations are all presented and discussed.

目錄 摘要 I Abstract II 致謝 IV 符號定義 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 纖維與基底材料 3 2.2 玻璃纖維蜂窩巢複合材料 4 2.3 切削刀具與鍍層材料 7 2.4 蜂窩巢工作物之固定與夾持 8 2.5 高速切削控制參數 9 2.6 切削力學分析 10 2.7 切削力與熱對刀具磨耗之影響 12 2.8 切削力與熱對表面完整性之影響 13 第三章 研究方法 15 3.1 研究流程 15 3.2 正交切削力學模型 16 3.3 單斜交切削力學模型 20 3.4 複斜交切削力學模型 23 第四章 實驗工作 25 4.1 實驗材料 25 4.2 切削刀具 26 4.3 實驗設置 27 4.4 數據擷取 29 4.4.1 切削力量測 29 4.4.2 切削溫度量測 29 4.4.3 刀具磨耗量測 30 4.4.4 表面完整性量測 32 4.5 實驗設計 32 4.6 統計檢定與分析 34 4.7 多指標分析最佳化方法 34 第五章 實驗結果與討論 35 5.1 切削力分析 35 5.2 切削力學模型分析 45 5.2.1 單斜交切削力學模型 45 5.2.2 複斜交切削力學模型 49 5.3 切削溫度分析 54 5.4 刀具磨耗分析 57 5.5 加工表面完整性分析 59 5.5.1 加工表面粗糙度 59 5.5.2 加工表面顯微組織 61 5.6 多指標最佳化 65 第六章 結論與未來展望 69 6.1 文獻回顧總結 69 6.2 研究結果總結 70 6.3 未來展望 72 參考文獻 74 附錄一 研究著作與學術榮譽 80 附錄二 CNC加工程式碼 82

W. König, P. Graß, Quality Definition and Assessment in Drilling of Fibre Reinforced Thermosets, CIRP Annals, 38 (1989) 119-124.
[2] T. Tsukizoe, N. Ohmae, Friction and wear of advanced composite materials, Fibre Science and Technology, 18 (1983) 265-286.
[3] D.W. Dwight, S. Begum, 1.10 Glass Fiber Reinforcements, in: P.W.R. Beaumont, C.H. Zweben (Eds.) Comprehensive Composite Materials II, Elsevier, Oxford, 2018, pp. 243-268.
[4] C. Gilmore, Materials Science and Engineering Properties, Cengage Learning, 2014.
[5] J. Sheikh-Ahmad, Machining of Polymer Composites, 2009.
[6] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2 ed., Cambridge University Press, Cambridge, 1997.
[7] T. Bitzer, Honeycomb Technology, 1997, pp. 80-97.
[8] G. Fernlund, C. Mobuchon, N. Zobeiry, 2.3 Autoclave Processing, in: P.W.R. Beaumont, C.H. Zweben (Eds.) Comprehensive Composite Materials II, Elsevier, Oxford, 2018, pp. 42-62.
[9] E.M. Trent, P.K. Wright, Chapter 8 - Cutting tool materials III: Ceramics, CBN diamond, in: E.M. Trent, P.K. Wright (Eds.) Metal Cutting (Fourth Edition), Butterworth-Heinemann, Woburn, 2000, pp. 227-249.
[10] W. König, C. Wulf, P. Graß, H. Willerscheid, Machining of Fibre Reinforced Plastics, CIRP Annals, 34 (1985) 537-548.
[11] D. Xiang, H. Feng, Z. Guo, L. Zhang, B. Wu, Preparation technology and properties of microtexture diamond-coated tools, International Journal of Refractory Metals and Hard Materials, 76 (2018) 16-24.
[12] K. Gupta, J. Davim, High Speed Machining, 2020.
[13] P.C. Siow, J. A. Ghani, M.J. Ghazali, T.R. Jaafar, M.A. Selamat, C.H. Che Haron, Characterization of TiCN and TiCN/ZrN coatings for cutting tool application, Ceramics International, 39 (2013) 1293-1298.
[14] Y. Ke, G. Liu, Attractive Fixture System Based on Magnetic Field and Friction Force for Numerically Controlled Machining of Paper Honeycomb Core, Journal of Manufacturing Science and Engineering, 127 (2005) 901-906.
[15] G. Liu, Y.L. Ke, Study on rudder clamping method of paper honeycomb, Hangkong Cailiao Xuebao/Journal of Aeronautical Materials, 24 (2004) 44-48+52.
[16] X.P. Hu, B.H. Yu, X.Y. Li, N.C. Chen, Research on Cutting Force Model of Triangular Blade for Ultrasonic Assisted Cutting Honeycomb Composites, Procedia CIRP, 66 (2017) 159-163.
[17] S. Vallapuzha, E.C. De Meter, S. Choudhuri, R.P. Khetan, An investigation of the effectiveness of fixture layout optimization methods, International Journal of Machine Tools and Manufacture, 42 (2002) 251-263.
[18] K.T. Anand, M. Siddharth, V. Sekar, S. Sundaram, Impact of Tool Inserts in High Speed Machining of GFRP Composite Material, Applied Mechanics and Materials, 787 (2015) 664-668.
[19] H. Attia, A. Sadek, M. Meshreki, 13 - High speed machining processes for fiber-reinforced composites, in: H. Hocheng (Ed.) Machining Technology for Composite Materials, Woodhead Publishing, 2012, pp. 333-364.
[20] K. Vijayan, S. Vijayarangan, G. Suresh, An investigation on high speed drilling of glass fibre reinforced plastic (GFRP), Indian Journal of Engineering and Materials Sciences, 12 (2005) 189-195.
[21] T. Yashiro, T. Ogawa, H. Sasahara, Temperature measurement of cutting tool and machined surface layer in milling of CFRP, International Journal of Machine Tools and Manufacture, 70 (2013) 63–69.
[22] Machining of Ceramics and Composites, Taylor & Francis, 1999.
[23] K. Palanikumar, Experimental investigation and optimisation in drilling of GFRP composites, Measurement, 44 (2011) 2138-2148.
[24] A. Jain, V. Bajpai, Chapter 1 - Introduction to high-speed machining (HSM), in: K. Gupta, J. Paulo Davim (Eds.) High Speed Machining, Academic Press, 2020, pp. 1-25.
[25] T. Childs, Adiabatic Shearing in Metal Machining, in: L. Laperrière, G. Reinhart (Eds.) CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 27-33.
[26] T. Opoz, X. Chen, Finite element simulation of chip formation, (2010).
[27] C. Wang, K. Cheng, R. Rakowski, D. Greenwood, J. Wale, Comparative studies on the effect of pilot drillings with application to high-speed drilling of carbon fibre reinforced plastic (CFRP) composites, The International Journal of Advanced Manufacturing Technology, 89 (2017) 3243-3255.
[28] V.P. Astakhov, Metal Cutting Mechanics, Taylor & Francis, 1998.
[29] V. Piispanen, Theory of Formation of Metal Chips, Journal of Applied Physics, 19 (1948) 876-881.
[30] M.E. Merchant, Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting, Journal of Applied Physics, 16 (1945) 318-324.
[31] C. Kuo, C. Wang, S. Ko, Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites, Wear, 398-399 (2018) 1-12.
[32] W.-C. Chen, Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates, International Journal of Machine Tools and Manufacture, 37 (1997) 1097-1108.
[33] J. Deng, J. Liu, J. Zhao, W. Song, Wear mechanisms of PVD ZrN coated tools in machining, International Journal of Refractory Metals and Hard Materials, 26 (2008) 164-172.
[34] D.-H. Xiang, B.-F. Wu, Y.-L. Yao, B. Zhao, J.-Y. Tang, Ultrasonic Vibration Assisted Cutting of Nomex Honeycomb Core Materials, International Journal of Precision Engineering and Manufacturing, 20 (2019) 27-36.
[35] D. Xiang, B. Wu, Y. Yao, Z. Liu, H. Feng, Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites, The International Journal of Advanced Manufacturing Technology, 100 (2019) 1521-1530.
[36] M. Jaafar, S. Atlati, H. Makich, M. Nouari, A. Moufki, B. Julliere, A 3D FE Modeling of Machining Process of Nomex® Honeycomb Core: Influence of the Cell Structure Behaviour and Specific Tool Geometry, Procedia CIRP, 58 (2017) 505-510.
[37] L. Sorrentino, S. Turchetta, C. Bellini, In process monitoring of cutting temperature during the drilling of FRP laminate, Composite Structures, 168 (2017) 549-561.
[38] J. Ramkumar, S.K. Malhotra, R. Krishnamurthy, Effect of workpiece vibration on drilling of GFRP laminates, Journal of Materials Processing Technology, 152 (2004) 329-332.
[39] C.-S. Chang, Turning of glass–fiber reinforced plastics materials with chamfered main cutting edge carbide tools, Journal of Materials Processing Technology, 180 (2006) 117-129.
[40] R. Zitoune, N. Cadorin, F. Collombet, M. Šíma, Temperature and wear analysis in function of the cutting tool coating when drilling of composite structure: In situ measurement by optical fiber, Wear, 376-377 (2017) 1849-1858.
[41] J. Xu, C. li, M. Chen, M. El Mansori, J. Davim, On the analysis of temperatures, surface morphologies and tool wear in drilling CFRP/Ti6Al4V stacks under different cutting sequence strategies, Composite Structures, 234 (2019) 111708.
[42] A. Sadek, M.H. Attia, M. Meshreki, B. Shi, Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates, CIRP Annals, 62 (2013) 91-94.
[43] S.Y. Liang, A.J. Shih, Shear Stress in Cutting, in: S. Liang, A.J. Shih (Eds.) Analysis of Machining and Machine Tools, Springer US, Boston, MA, 2016, pp. 133-139.
[44] M.C. Shaw, J. Cookson, Metal cutting principles, Oxford university press New York, 2005.
[45] J. Tang, J. Du, Y. Chen, Modeling and experimental study of grinding forces in surface grinding, Journal of Materials Processing Technology, 209 (2009) 2847-2854.
[46] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2 ed., Cambridge University Press, Cambridge, 2012.
[47] L. Zhou, F. Peng, R. Yan, P. Yao, C. Yang, B. Li, Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects, (2015).
[48] E.U. Enemuoh, A.S. El-Gizawy, A. Chukwujekwu Okafor, An approach for development of damage-free drilling of carbon fiber reinforced thermosets, International Journal of Machine Tools and Manufacture, 41 (2001) 1795-1814.
[49] Z. De-yuan, F. Xiu-juan, W. Li-jiang, C. Ding-chang, Study on the drill skidding motion in ultrasonic vibration microdrilling, International Journal of Machine Tools and Manufacture, 34 (1994) 847-857.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 2025/08/04 (校外網路)
全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE