簡易檢索 / 詳目顯示

研究生: 楊書萍
Shu-Ping Yang
論文名稱: 具硝基取代之八乙基紫質金屬錯合物的合成、鑑定與應用於電催化二氧化碳還原研究
Electrocatalytic Carbon Dioxide Reduction: Synthesis, Characterization and Applications of Metal Complexes of Nitro-Substituted Octaethylporphyrin.
指導教授: 江志強
Jyh-Chiang Jiang
洪政雄
Chen-Hsiung Hung
口試委員: 洪政雄
Chen-Hsiung Hung
江明錫
Ming-Hsi Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 硝基取代八乙基紫質電催化二氧化碳還原
外文關鍵詞: Electrocatalytic Carbon Dioxide Reduction, Nitro-Substituted Octaethylporphyrin
相關次數: 點閱:462下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為解決現今人類面臨的全球氣候危機,開發替代能源以及尋求化石燃料替代品成為重要的研究方向。利用再生能源以電化學方式將二氧化碳轉換為較高價值的化學原料為當今熱門的研究主題。在本研究中我們以八乙基紫質 (H2OEP) 作為配位基,藉由硝基作為 meso 位置拉電子基修飾,並分別合成鎳、鈷和鐵三種金屬離子錯合物作為催化劑,進行電催化二氧化碳還原活性研究。首先我們將八乙基紫質金屬錯合物吸附於碳黑粒子上,其中八乙基紫質金屬錯合物與碳黑之重量比值為 1:1,使分子催化劑吸附於碳質載體形成異相催化劑,結合氣體擴散電極 (GDE),並應用於流式電解槽 (Flow electrochemical cell ) 中進行二氧化碳還原反應 (CO2RR),實驗結果得到在以 0.4 M KOH作為電解液下,CoOEP (a-0) 對於二氧化碳還原至 CO 的法拉第效率 FECO 最高達到 95 % ,而以硝基修飾後之1NO2_CoOEP (a-1) 在相同電位及相同電池條件下的 FECO 為90 %;以及2NO2_CoOEP (a-2) 在相同電位及相同電池條件下的 FECO 僅達 79 %。另外,FeOEP (b-0) 對於二氧化碳還原至 CO 的法拉第效率 FECO 最高達到 54 % ,而以硝基修飾後之1NO2_FeOEP (b-1) 在相同電位及相同電池條件下的 FECO = 33 %;以及2NO2_FeOEP (b-2) 在相同電位及相同電池條件下的 FECO = 19 %。由上述結果表明將八乙基鈷紫質結合導電碳材應用於流式電解槽 (Flow cell) 的策略能高效催化二氧化碳還原反應生成一氧化碳,結果也顯示以硝基作為拉電子基修飾後的八乙基鈷紫質雖然具有拉電子的特性,但同時也具有高度與水分子形成氫鍵能力,因此越多硝基取代的八乙基紫質,將二氧化碳還原反應生成一氧化碳的選擇性更低,且伴隨的氫氣產生量也越多。研究結果顯示在此系統中,鈷金屬催化劑相較於鐵金屬催化劑,更能有效的將二氧化碳還原反應生成一氧化碳。


To address the current global climate crisis, the development of alternative energy sources and the search for substitutes for fossil fuels have become important research directions. The use of renewable energy to convert carbon dioxide into higher-value chemical raw materials through electrochemical means is a hot research topic today. In this study, we used octaethylporphyrin (H2OEP) as a coordinating ligand, modified with electron-withdrawing nitro groups at the meso position, and synthesized nickel, cobalt, and iron metal ion complexes as catalysts for electrocatalytic carbon dioxide reduction. We adsorbed the metal complexes of octaethylporphyrin onto carbon black particles, with a weight ratio of octaethylporphyrin metal complexes to carbon black of 1:1 (?), allowing the molecular catalyst to adsorb onto the carbonaceous carrier, forming a heterogeneous catalyst. This catalyst was combined with a gas diffusion electrode (GDE) and applied in a flow electrochemical cell for the electrochemical reduction of carbon dioxide (CO2RR). The experimental results showed that, with a 0.4 M KOH electrolyte, CoOEP (a-0) achieved the highest Faradaic efficiency (FECO) of 95% for the reduction of carbon dioxide to CO. After nitro group modification, 1NO2_CoOEP (a-1) achieved an FECO of 90% at the same potential and under the same cell conditions, while 2NO2_CoOEP (a-2) only reached an FECO of 79%. Furthermore, FeOEP (b-0) achieved a maximum FECO of 54% for the reduction of carbon dioxide to CO, while 1NO2_FeOEP (b-1) had an FECO of 33% and 2NO2_FeOEP (b-2) had an FECO of 19% under the same potential and cell conditions. The above results indicate that the strategy of using octaethylporphyrin cobalt complex-based catalysts combined with conductive carbon materials in a flow electrochemical cell can efficiently catalyze the electrochemical reduction of carbon dioxide to produce carbon monoxide. It is noteworthy that although the nitro group-modified octaethylporphyrin cobalt complex contains an electron-withdrawing substituent for lower onset potential, it also has a high contains an electron-withdrawing substituent for lower onset potential, it also has a high ability to form hydrogen bonds with water molecules. Therefore, the more nitro groups substituted in octaethylporphyrin complexes, the lower the selectivity for the reduction of carbon dioxide to carbon monoxide, and the greater the production of hydrogen gas. Our results also demonstrated that cobalt as the central metal ion of catalysts is more effective than iron-based catalysts in the electrochemical reduction of carbon dioxide to produce carbon monoxide.

摘要 8 Abstract 9 第一章、序論 11 第一節、全球暖化問題 11 第二節、二氧化碳簡介 12 第三節、碳循環簡介 13 第四節、碳捕集和碳封存 (Carbon Capture and Storage) 14 第二章、紫質 18 第一節、紫質簡介 18 第二節、紫質吸收光譜原理 23 第三節、紫質近期的合成及應用發展 25 第三章、二氧化碳還原反應 (Carbon dioxide reduction reaction , CO2RR) 28 第一節、電催化的發展 28 第二節、二氧化碳還原反應催化之應用 29 第三節、電催化CO2RR電解槽裝置 33 第四章、研究動機 36 第五章 實驗藥品及儀器設備 38 第一節、實驗藥品 38 第二節、儀器設備 39 第六章、八乙基紫質衍生物及其鎳、鈷、鐵金屬錯合物的合成、鑑定與性質探討 40 第一節、前言 40 第二節、八乙基紫質衍生物的合成 41 第三節、電化學性質分析-循環伏安法 (Cyclic Voltammetry, CV) 49 第四節、Flow cell 之電催化二氧化碳還原實驗裝置及組成 50 第五節、氣體擴散電極 (GDE) 的製備 51 第六節、電解實驗流程及條件 52 第七章、結果與討論 55 第一節、系統設計與硝基取代八乙基紫質與其金屬錯合物合成 55 第二節、八乙基紫質 (OEP) 系列之紫外光-可見光吸收光譜圖 57 第三節、八乙基紫質 (OEP) 系列之電化學分析 60 第四節、循環伏安法快速評估八乙基金屬紫質錯合物 (MOEP) 於 CO2RR 活性 61 第五節、八乙基紫質 (OEP) 系列之電催化二氧化碳還原研究結果 65 第八章、結論與未來展望 75 第九章、參考文獻 76 附錄、光譜資料 78

1. Wikipedia, Intergovernmental Panel on Climate Change. 2017.
2. CNN, global warming. 2023.
3. Wikipedia, Carbon cycle. 2022.
4. Fuss, S.; Lamb, W. F.; Callaghan, M. W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T. J. E. R. L.,ISO4. 2018, 13 (6), 063002.
5. IEA, 全球能源部門2050淨零排放路徑. 2021.
6. Mondal, B.; Sen, P.; Rana, A.; Saha, D.; Das, P.; Dey, A. ACS Catalysis 2019, 9 (5), 3895-3899.
7. Energy & Environmental Science. Hatton, S. V. a. T. A., Ed. 2019.
8. Song, H.; Liu, Q.; Xie, Y. J. C. C. 2018, 54 (15), 1811-1824.
9. Artz, J.; Müller, T. E.; henert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W.,t. Chemical reviews 2018, 118 (2), 434-504.
10. Wikipedia, Carbon Capture Utilise and Storage. 2022.
11. Bureau of Energy, M. o. E. A., R.O.C., CO2再利用技術之電化學應用趨勢. 2022.
12. Oertling, W. A.; Salehi, A.; Chang, C. K.; Babcock, G. T. J. J. o. P. C. pi. cation radicals. 1987, 91 (11), 3114-3116.
13. Pansci, 仿效葉綠素 捕捉太陽能. 2021.
14. 陳佩心 Developing and application of the growth hormone-nanodiamond complex; 2007.
15. Park, J. M.; Hong, K.-I.; Lee, H.; Jang, W.-D. Acc. Chem. Res. 2021, 54 (9), 2249-2260.
16. Rita, G. Jamal, U., Ed. IntechOpen: Rijeka, 2012; p Ch. 6.
17. Wöhrle, D. J. A. M., The colours of life. L. R. Milgrom, Oxford university press, Oxford 1997, 9, 1191-1192.
18. Marsh, D.; Mink, L. J. J. o. c. e. 1996, 73 (12), 1188.
19. Abdinejad, M.; Dao, C.; Zhang, X.-A.; Kraatz, H. B. Journal of Energy Chemistry 2021, 58, 162-169.
20. Dong, H.; Lu, M.; Wang, Y.; Tang, H.-L.; Wu, D.; Sun, X.; Zhang, F.-M. 2022, 303, 120897.
21. Huang, C.; Bao, W.; Huang, S.; Wang, B.; Wang, C.; Han, S.; Lu, C.; Qiu, F. 2023, 28 (1), 150.
22. materialsnet, 電化學二氧化碳還原生成化學燃料與銅催化劑化學態之關聯性. 2022.
23. Wikipedia, electrochemical. 2020.
24. Hung, S.-F. J. P.; Chemistry, A. 2020, 92 (12), 1937-1951.
25. 談駿嵩, 二氧化碳再利用成為新興產業之可能性. 2019.
26. Mao, J.; Li, K.; Peng, T. J. C. S.2013, 3 (10), 2481-2498.
27. Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angewandte Chemie 2021, 60 (38), 20627-20648.
28. Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J. Catalysis Today 2014, 224, 3-12.
29. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angewandte Chemie 2013, 52 (29), 7372-408.
30. Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. J. A. S. 2018, 5 (1), 1700275.
31. Wenchuan Lai, a. Y. Q., †a Jiawei Zhang, ORCID logo ab Zhiqun Lin ORCID logo *b and Hongwen Huang ORCID logo *a. Energy and Enviromental Science 2022.
32. Hori, Y.; Kikuchi, K.; Suzuki, S. J. C. l. 1985, 14 (11), 1695-1698.
33. Lin, R.; Guo, J.; Li, X.; Patel, P.; Seifitokaldani, A. J. C. 2020, 10 (5), 473.
34. Frontana-Uribe, B.; Espinoza-Montero, P.; Vasquez-Medrano, R.; Ibanez, J. Journal of The Electrochemical Society 2013, 160, G3171-G3177.
35. Lees, E. W.; Mowbray, B. A.; Salvatore, D. A.; Simpson, G. L.; Dvorak, D. J.; Ren, S.; Chau, J.; Milton, K. L.; Berlinguette, C. P. J. J. o. M. C. A. 2020, 8 (37), 19493-19501.
36. Gong, L.-C.; Dolphin, D. Canadian Journal of Chemistry 1985, 63 (2), 401-405.
37. Zhang, R.; Huang, Y.; Abebrese, C.; Thompson, H.; Vanover, E.; Webb, C., Inorganica Chimica Acta 2011, 376 (1), 152-157.
38. Sevvel, R.; Rajagopal, S.; Srinivasan, C.; Alhaji, N. I.; Chellamani, A. The Journal of Organic Chemistry 2000, 65 (11), 3334-3340.
39. Dmitrieva, O. A.; Chizhova, N. V.; Tesakova, M. V.; Parfenyuk, V. I. Journal of Organometallic Chemistry 2021, 940, 121790.
40. Salvatore, D.; Berlinguette, C. P. ACS Energy Letters 2020, 5 (1), 215-220.
41. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H.-S.; Min, B. K.; Hwang, Y. J. Journal of the American Chemical Society 2019, 141 (11), 4624-4633.

QR CODE