簡易檢索 / 詳目顯示

研究生: 陳一寬
Yi-Kuan Chen
論文名稱: 氧化亞銅表面修飾二硫化錫形成Z-scheme異質結構提升光催化二氧化碳還原效率之研究
Cu2O Decorated on SnS2 as Z-scheme Heterostructure to Boost the Activity of CO2 Reduction Reaction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
黃炳照
Bing Joe Hwang
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 水熱法氧化亞銅二硫化錫光催化二氧化碳還原Z-scheme異質結構
外文關鍵詞: hydrothermal process, Cu2O, SnS2, photocatalytic CO2 reduction, Z-scheme heterostructure
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用Z-scheme異質結構作為光觸媒還原二氧化碳形成一氧化碳以及碳氫化合物。本實驗成功利用水熱法將氧化亞銅修飾於二硫化錫表面,藉以形成Z-scheme異質結構,用以進行光催化二氧化碳還原反應。經由紫外光電子能譜儀鑑定兩材料的功函數藉以證明此異質結構為Z-scheme異質結構,此機制能有效減少電子電洞對的再結合,即能有效提升載子分離率,使更多的電子電洞能夠與水以及二氧化碳進行反應。於本研究中,探討以不同溫度修飾氧化亞銅在二硫化錫表面對於材料的結構、性質等等的影響。並利用X光光電子能譜儀探討經過光催化反應前後各個元素的價態變化,藉以探討Z-scheme異質結構對於反應前後氧化態的影響,可以發現於反應後氧化亞銅的二價銅的比例降低而錫的結合能向較高能量偏移,此現象顯示電子由二硫化錫傳遞至氧化亞銅並且符合Z-scheme異質結構的電子傳遞機制。光致激發光譜儀的量測結果顯示,將氧化亞銅修飾二硫化錫表面後,載子再結合導致的螢光放光強度大幅下降,顯示此異質結構能有效的提升載子分離,並結合氣相層析儀探討催化活性以及產物的變化,氧化亞銅修飾的二硫化錫主要產物為一氧化碳,產率為2.813 μmol h-1 g-1,對比修飾前的量子效率提升至兩倍,證實經由氧化亞銅修飾後,能有效提升電子電洞對的分離,減少載子複合的機率,並能有效提升光觸媒對二氧化碳還原的效率。


In this study, we successfully synthesized Cu2O/SnS2 Z-scheme heterostructure as a photocatalyst for CO2 reduction to produce CO and hydrocarbon. This study used a simple two-step hydrothermal process to synthesize Cu2O on the SnS2 nanoflower. This heterostructure forms a Z-scheme structure and it can efficiently improve the separation of electron-hole pairs and the results proved by Ultraviolet photoelectron spectroscopy. Due to the Z-scheme structure, the electron-hole pairs get a higher chance to react with reactants and improve the hydrocarbon production yield. In this study, we used X-ray diffraction and Raman spectrum to compare the crystal structure of Cu2O and SnS2 heterostructure synthesized by different hydrothermal temperatures. After the structure analysis, we used X-ray photoelectron spectroscopy to compare the catalysts before and after the photocatalytic reaction. The ratio of Cu+ increased and Sn4+ shifted to the higher binding energy. These results indicated that the Z-scheme structure induces photo-carrier transfer from SnS2 to Cu2O and suppresses the oxidation of Cu2O. From the photoluminescence results, the intensity of the Cu2O/SnS2 heterostructure dramatically decreased. The results indicate Cu2O/SnS2 Z-scheme heterostructure reduces the charge recombination. According to the gas chromatography results, the Cu2O/SnS2 heterostructure produced CO as the main product and the production yield reach 2.813 μmol h-1 g-1 after three hours of illumination. The quantum efficiency becomes twice as much as origin SnS2. The results proved that Cu2O decorated on the SnS2 nanoflower as a Z-scheme heterostructure reduces the chance of charge recombination and efficiently improves catalyst activity.

目錄 中文摘要.........................................................................................................................I Abstract..........................................................................................................................II 致謝..............................................................................................................................IV 目錄...............................................................................................................................V 圖目錄.......................................................................................................................VIII 表目錄..........................................................................................................................XI 第一章 緒論................................................................................................................1 1.1 前言...................................................................................................................1 1.2 研究動機...........................................................................................................2 第二章 文獻回顧與實驗原理....................................................................................4 2.1 二氧化碳還原的原理與發展...........................................................................4 2.2 半導體複合材料觸媒.......................................................................................8 2.3 氧化亞銅(Cu2O)半導體材料性質.................................................................13 2.4 二硫化錫(SnS2)半導體材料性質..................................................................19 第三章 實驗儀器與方法..........................................................................................26 3.1 實驗藥品.........................................................................................................26 3.2 實驗步驟.........................................................................................................27 3.2.1 SnS2合成..............................................................................................27 3.2.2 Cu2O/SnS2合成....................................................................................28 3.3 材料鑑定與分析儀器.....................................................................................29 3.3.1 場發射掃描式電子顯微鏡(Field-Emission Scanning Microscope,FESEM) ...............................................................................................29 3.3.2 能量色散X光光譜儀(Energy Dispersive Spectroscopry) ................30 3.3.3 X光繞射分析儀(X-ray diffraction,XRD) .......................................30 3.3.4 紫外-可見光光譜儀(UV-visible Spectrum) .......................................33 3.3.5 穿透式電子顯微鏡..............................................................................34 3.3.6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS)............35 3.3.7 拉曼震動光譜儀(Raman Spectrum) ...................................................36 3.3.8 光致激發光譜儀(Photoluminescence spectrum) ................................37 3.3.9 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy).............38 3.3.10 氣相層析儀(Gas chromatography) .............................................38 第四章 實驗結果與討論..........................................................................................40 4.1 二硫化錫結構鑑定與分析.............................................................................40 4.2 水熱法以不同溫度合成氧化亞銅/二硫化錫結構鑑定與分析....................42 4.2.1 Cu2O/SnS2表面形貌及元素分析........................................................42 4.2.2 不同溫度合成材料晶體結構分析......................................................46 4.2.3 Cu2O/SnS2光學性質分析....................................................................48 4.2.4 光致激發光譜儀分析..........................................................................49 4.2.5 紫外光電子能譜儀能帶結構分析......................................................51 4.3 有機溶劑合成氧化亞銅/二硫化錫結構鑑定與分析...................................54 4.3.1 不同比例摻入乙二醇之Cu2O/SnS2表面形貌及元素分析..............54 4.3.2 不同比例摻入乙二醇之Cu2O/SnS2晶體結構分析..........................56 4.3.3 不同比例摻入乙二醇水熱合成之Cu2O/SnS2異質結構光致激發光譜儀分析..............................................................................................57 4.4 反應前後價態變化分析.................................................................................58 4.4.1 Cu 2p 價態分析...................................................................................58 4.4.2 Sn 3d 價態分析...................................................................................61 4.5 光催化二氧化碳還原效率分析.....................................................................63 4.5.1 不同溫度合成之異質結構生成之產物及產量效率分析..................64 4.5.2 摻入不同比例乙二醇合成之樣品產物及產量分析..........................65 4.5.3 不同樣品之光催化背景值量測..........................................................66 4.5.4 量子轉換效率比較..............................................................................67 4.5.5 光催化活性穩定性測試......................................................................69 第五章 結論..............................................................................................................71 第六章 參考資料......................................................................................................72

1. Tahir, M.; Amin, N. S., Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management 2013, 76, 194-214.
2. Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. K., A Hierarchical Z-scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11 (39), 5262-5271.
3. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
4. Li, Y.; Gao, C.; Long, R.; Xiong, Y., Photocatalyst design based on two-dimensional materials. Materials Today Chemistry 2019, 11, 197-216.
5. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275 (5676), 115-116.
6. Abdullah, H.; Khan, M. M. R.; Ong, H. R.; Yaakob, Z., Modified TiO 2 photocatalyst for CO 2 photocatalytic reduction: An overview. Journal of CO2 Utilization 2017, 22, 15-32.
7. Wang, W.-N.; Soulis, J.; Yang, Y. J.; Biswas, P., Comparison of CO2 Photoreduction Systems: A Review. Aerosol and Air Quality Research 2014, 14 (2), 533-549.
8. Yahaya, A. H.; Gondal, M. A.; Hameed, A., Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chemical Physics Letters 2004, 400 (1-3), 206-212.
9. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
10. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M., Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today 2018, 21 (10), 1042-1063.
11. Singh, M.; Singh, V.; Mehta, B., Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by rf magnetron sputtering. Journal of nanoscience and nanotechnology 2008, 8 (8), 3889-3894.
12. Yuan, B.; Liu, X.; Fu, H.; Liu, J.; Zhu, Q.; Wu, M., One-step synthesis of flower-like Cu2O photoelectric materials by hydrothermal method. Solar Energy 2019, 188, 265-270.
13. Lan, X.; Zhang, J.; Gao, H.; Wang, T., Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O. CrystEngComm 2011, 13 (2), 633-636.
14. LUO, X.-L.; HAN, Y.-F.; YANG, D.-S.; CHEN, Y.-S., Solvo-thermal synthesis of Cu2O micro-spheres and their catalytic performance for thermal decomposition of ammonium perchlorate. Acta Physico-Chimica Sinica 2012, 28 (2), 297-302.
15. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H., Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc 2012, 134 (2), 1261-7.
16. Ho, J.-Y.; Huang, M. H., Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 14159-14164.
17. Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z., Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. Journal of Materials Chemistry 2009, 19 (29).
18. McShane, C. M.; Choi, K.-S., Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Journal of the American Chemical Society 2009, 131 (7), 2561-2569.
19. Taneja, P.; Chandra, R.; Banerjee, R.; Ayyub, P., Structure and properties of nanocrystalline Ag and Cu2O synthesized by high pressure sputtering. Scripta materialia 2001, 44 (8-9), 1915-1918.
20. Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H. M., Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun (Camb) 2011, 47 (24), 6763-83.
21. Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C.-J.; Cai, Z.; Guest, J. R.; Ren, Y.; Stamenkovic, V.; Curtiss, L. A.; Liu, Y.; Rajh, T., Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy 2019, 4 (11), 957-968.
22. Gao, Y.; Wu, Q.; Liang, X.; Wang, Z.; Zheng, Z.; Wang, P.; Liu, Y.; Dai, Y.; Whangbo, M. H.; Huang, B., Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. Adv Sci (Weinh) 2020, 7 (6), 1902820.
23. Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y., Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy 2019, 60, 576-582.
24. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A., Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Applied Catalysis B: Environmental 2017, 217, 485-493.
25. Xu, H.; Ouyang, S.; Liu, L.; Wang, D.; Kako, T.; Ye, J., Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction. Nanotechnology 2014, 25 (16), 165402.
26. Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J., Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2020, 268.
27. Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; Xie, Y., Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem Int Ed Engl 2012, 51 (35), 8727-31.
28. Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y.; Chung, P. W.; Lin, M. C.; Chen, L. C.; Chen, K. H., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat Commun 2018, 9 (1), 169.
29. Voznyi, A.; Kosyak, V.; Opanasyuk, A.; Tirkusova, N.; Grase, L.; Medvids, A.; Mezinskis, G., Structural and electrical properties of SnS2 thin films. Materials Chemistry and Physics 2016, 173, 52-61.
30. Burton, L. A.; Colombara, D.; Abellon, R. D.; Grozema, F. C.; Peter, L. M.; Savenije, T. J.; Dennler, G.; Walsh, A., Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2. Chemistry of Materials 2013, 25 (24), 4908-4916.
31. An, X.; Yu, J. C.; Tang, J., Biomolecule-assisted fabrication of copper doped SnS2nanosheet–reduced graphene oxide junctions with enhanced visible-light photocatalytic activity. J. Mater. Chem. A 2014, 2 (4), 1000-1005.
32. Yongqian Lei; Shuyan Song; Weiqiang Fan; Yan Xing; Zhang, a. H., Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2: Hierarchical Structures and Their Enhanced Photocatalytic Property. J. Phys. Chem. C 2009, 1113, 1280-1285.
33. Bin Hai; Kaibin Tang*; Chunrui Wang; Changhua An; Qing Yang; Guozhen Shen; Qian, Y., Synthesis of SnS2 nanocrystals via a solvothermal process. Journal of Crystal Growth 2001, 225, 92-95.
34. Yang, Q.; Tang, K.; Wang, C.; Zhang, D.; Qian, Y., The Synthesis of SnS2 Nanoflakes from Tetrabutyltin Precursor. Journal of Solid State Chemistry 2002, 164 (1), 106-109.
35. Kim, T.-J.; Kim, C.; Son, D.; Choi, M.; Park, B., Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources 2007, 167 (2), 529-535.
36. Kiruthigaa, G.; Manoharan, C.; Raju, C.; Jayabharathi, J.; Dhanapandian, S., Solid state synthesis and spectral investigations of nanostructure SnS2. Spectrochim Acta A Mol Biomol Spectrosc 2014, 129, 415-20.
37. Ye, G.; Gong, Y.; Lei, S.; He, Y.; Li, B.; Zhang, X.; Jin, Z.; Dong, L.; Lou, J.; Vajtai, R.; Zhou, W.; Ajayan, P. M., Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research 2017, 10 (7), 2386-2394.
38. Park, S.; Park, J.; Selvaraj, R.; Kim, Y., Facile microwave-assisted synthesis of SnS2 nanoparticles for visible-light responsive photocatalyst. Journal of Industrial and Engineering Chemistry 2015, 31, 269-275.
39. Parveen, N.; Ansari, S. A.; Alamri, H. R.; Ansari, M. O.; Khan, Z.; Cho, M. H., Facile Synthesis of SnS2 Nanostructures with Different Morphologies for High-Performance Supercapacitor Applications. ACS Omega 2018, 3 (2), 1581-1588.
40. Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D., Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ Sci Technol 2011, 45 (21), 9324-31.
41. Zhang, Y. C.; Yao, L.; Zhang, G.; Dionysiou, D. D.; Li, J.; Du, X., One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Applied Catalysis B: Environmental 2014, 144, 730-738.
42. Jiao, X.; Li, X.; Jin, X.; Sun, Y.; Xu, J.; Liang, L.; Ju, H.; Zhu, J.; Pan, Y.; Yan, W.; Lin, Y.; Xie, Y., Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction. J Am Chem Soc 2017, 139 (49), 18044-18051.
43. Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J., A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis 2017, 352, 532-541.
44. Julien, C.; Mavi, H.; Jain, K.; Balkanski, M.; Perez-Vicente, C.; Morales, J., Resonant Raman scattering studies of SnS2 crystals. Materials Science and Engineering: B 1994, 23 (2), 98-104.
45. Kumar, G. M.; Xiao, F.; Ilanchezhiyan, P.; Yuldashev, S.; Kumar, A. M.; Cho, H.; Lee, D.; Kang, T., High performance photodiodes based on chemically processed Cu doped SnS2 nanoflakes. Applied Surface Science 2018, 455, 446-454.
46. Lai, C.; Wu, Q.; Chen, J.; Wen, L.; Ren, S., Large-area aligned branched Cu(2)S nanostructure arrays: room-temperature synthesis and growth mechanism. Nanotechnology 2010, 21 (21), 215602.
47. Dawson, P.; Hargreave, M.; Wilkinson, G., The dielectric and lattice vibrational spectrum of cuprous oxide. Journal of Physics and Chemistry of Solids 1973, 34 (12), 2201-2208.
48. Song, X.; Zhang, X.; Li, X.; Che, H.; Huo, P.; Ma, C.; Yan, Y.; Yang, G., Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride. Journal of Colloid and Interface Science 2020, 578, 574-583.
49. Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J., Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C 3 N 4 /Ag 2 WO 4 photocatalyst. Applied Surface Science 2017, 391, 175-183.
50. Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I., Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Applied Catalysis B: Environmental 2020, 279.
51. Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M., Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24 (12), 811-820.
52. Velásquez, P.; Leinen, D.; Pascual, J.; Ramos-Barrado, J.; Cordova, R.; Gómez, H.; Schrebler, R., XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S). Journal of Electroanalytical Chemistry 2001, 510 (1-2), 20-28.
53. Zhu, C. Q.; Osherov, A.; Panzer, M. J., Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 2013, 111, 771-778.
54. Xu, F.; Zhang, L.; Cheng, B.; Yu, J., Direct Z-scheme TiO2/NiS Core–Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity. ACS Sustainable Chemistry & Engineering 2018, 6 (9), 12291-12298.

無法下載圖示 全文公開日期 2023/10/06 (校內網路)
全文公開日期 2026/10/06 (校外網路)
全文公開日期 2026/10/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE