簡易檢索 / 詳目顯示

研究生: 廖昱傑
Yu-Chieh Liao
論文名稱: 以數值分析方法探討砂土及黏土層開挖之有限土體效應並精進一維簡化法
Study of Limited Soil Space Effect for Deep Excavation in Sand and Clay and Its 1D Simplified Method by Numerical Analyses
指導教授: 林宏達
Horn-Da Lin
口試委員: 歐章煜
Ou, Zhang-Yu
林永光
Yong-Kuang Lin
呂芳熾
Fang-Chih Lyu
林宏達
Horn-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 177
中文關鍵詞: 開挖有限土體近接施工土壓力
外文關鍵詞: Excavation, Finite soil body, Restricted construction, Earth pressure
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以砂土及黏土層實際案例為依據,應用PLAXIS2D及3D程式之數值分析結果探討深開挖引致之有限土體效應,並由探討之結論精進有限土體深開挖一維簡化分析法。
    由砂土層案例二維分析結果得知,鄰房寬度比(W/He)越寬、深度比(Ha/He)越深及距牆比(L/He)越近,則有限土體效應越顯著,與過去研究針對黏土層開挖有限土體效應之探討結果相同。有限土體分析適用範圍為,距牆比(L/He)≦0.8,深度比(Ha/He)≧0.5,寬度比(W/He)≧3或整體勁度已足夠。距牆比之適用範圍與黏土層開挖時距牆比(L/He)≦1.0相異,經探討後兩者之結果皆合理。
    由黏土層開挖三維分析之側向土壓力結果得知,鄰房長度越長則側向土壓力越小,有限土體效應越顯著。當鄰房長度達0.9倍開挖長度後,有限土體效應發展趨於平緩。與過去研究以壁體變位為指標探討之結果相同。鄰房角落以30度線向開挖區延伸可評估有限土體側向土壓力之影響區域,而側向土壓力折減量可使用20%±1%進行概估。以側向土壓力結果界定三維有限土體效應影響範圍,與壁體變位所界定之結果相同。並以側向土壓力結果建立三維效應量化係數α_LPR公式,且與以壁體變位結果建立之α_FSRd公式,彙整為綜合兩結果之三維效應量化係數α。
    最後,以砂土層開挖有限土體分析適用範圍及黏土層開挖三維效應量化係數α,精進有限土體深開挖一維簡化分析法。並以實際開挖案例進行驗證,得知砂土層開挖有限土體分析適用範圍為距牆比(L/He)<0.8應屬合理,且使用三維效應量化係數α,可合理地呈現三維有限土體效應。


    In this study, the numerical analysis results of PLAXIS 2D and 3D programs are applied to investigate the finite soil effects caused by deep excavation based on real cases of sand and clay. The results are used to refine the one-dimensional simplified method for deep excavation of the finite soil space conditions.
    From the results of the 2D analysis of the sand layer case, we found out that the wider the W/He, the deeper the Ha/He, and the closer the L/He, the limited oil space effects are more significant. The results are the same as previous studies on the finite soil effects of excavation in clay. The scope suitable for finite soil analysis is as follows: L/He≦0.8, Ha/He≧0.5, W/He≧3 or as long as the overall stiffness is sufficient. The scope suitable for sand of L/He≦0.8 is somewhat different from clay of L/He≦1.0. However, both results are deemed reasonable after this study.
    From the results of the 3D analysis of the clay layer case, we found out that the longer the length of the adjacent building, the lower the lateral earth pressure, and the finite soil effect is more significant. The increasing trend of the limited soil space effect becomes mild when the adjacent building length is 0.9 times of the excavation length. The area of influence caused by the limited soil space conditions can be estimated by using the 30 degrees’ lines that extend from the corners of the adjacent building to the excavation area. The lateral soil pressure results can define the range of influence of the 3D limited soil space conditions and the outcome is the same as that defined by the diaphragm wall displacements. Lastly, this study combines the α_LPR calculated from the lateral earth pressure and the α_FSRd obtained from the diaphragm wall displacement into a new parameter α.
    Finally, the one-dimensional simplified analysis method for deep excavation under the limited soil space conditions is refined by adopting the scope suitable for sand excavation and the new 3D effect parameter α. This study also verified that the scope suitable for finite soil analysis for sand excavation of L/He<0.8 is reasonable. The 3D finite soil effect can be reasonably presented by using the parameter α.

    論文摘要 目錄 表目錄 圖目錄 符號索引 第一章 緒論 1.1 研究背景與目的 1.2 研究內容與架構 第二章 文獻回顧 2.1 深開挖工程特性 2.1.1 開挖引致擋土壁變形行為 2.1.2 開挖引致地表沉陷特性 2.1.3 開挖之三向度行為 2.2 有限土體對深開挖之影響 2.2.1 有限土體影響因子 2.2.2 有限土體對深開挖壁體變位之影響 2.2.3 有限土體分析適用範圍 2.3 有限土體效應評估方法 2.3.1 非凝聚性土壤-砂土 2.3.2 凝聚性土壤-黏土 2.4 有限土體效應引致之側向土壓力評估 2.4.1 傳統側向土壓力計算法 2.4.2 極限平衡法 2.4.3 數值分析法 第三章 以數值分析結果探討砂土層開挖二維有限土體效應 3.1 數值分析軟體PLAXIS 3.1.1 PLAXIS軟體介紹 3.1.2 土壤及分析模式 3.2 高雄捷運07車站案例簡介及二維數值分析 3.2.1 砂土層開挖工程案例篩選條件 3.2.2 工程案例概況 3.2.3 PLAXIS2D自由場參數律定 3.3 砂土層開挖二維有限土體效應探討 3.3.1 二維有限土體假設案例分析 3.3.2 砂土層開挖二維有限土體效應探討 3.3.3 砂土層開挖有限土體分析適用範圍 第四章 以數值分析之側向土壓力結果探討黏土層開挖三維有限土體效應 4.1 僑日興案例簡介及三維數值分析 4.1.1 工程案例概況 4.1.2 PLAXIS3D自由場參數律定 4.1.3 三維分析之鄰房模型及分析結果 4.2 三維有限土體引致之側向土壓力探討 4.2.1 三維有限土體假設案例分析 4.2.2 三維分析之側向土壓力結果探討 4.2.3 有限土體側向土壓力之影響區 4.3 三維有限土體效應量化探討 4.3.1 三維有限土體效應之範圍界定 4.3.2 三維有限土體效應量化公式 第五章 有限土體一維簡化分析法之精進 5.1 一維分析軟體TORSA3.0 5.1.1 TORSA3.0軟體介紹 5.1.2 土壤模式 5.2 有限土體一維簡化分析法 5.2.1 現有一維簡化分析法 5.2.2 本研究精進之一維簡化分析法 5.3 有限土體一維簡化分析法案例應用 5.3.1 高雄捷運 07車站案例一維開挖分析結果與探討-砂土層開挖案例 5.3.2 僑日興案例一維開挖分析結果與探討-黏土層開挖案例 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    1.吳智偉(2017)「鄰近建物深開挖有限土體效應之案例探討及應用」,碩士論文,國立台灣科技大學營建工程系研究所。
    2.吳孟蓉(2020)「以實際開挖案例進行有限土體深開挖一維簡化分析法之研究」,碩士論文,國立台灣科技大學營建工程系研究所。
    3.林宏達,陳建勝,林永光,呂芳熾,黃一昌,林建宏(2012),「沉積土層深開挖有限土體引致之土壓力分析與案例探討」,地工技術,第133期,第65-76頁。
    4.陳建勝(2010),「深開挖有限土體引致之土壓力分析與應用」,碩士論文,國立台灣科技大學營建工程系研究所。
    5.張智淵(2021),「以三維分析結果精進有限土體深開挖一維簡化分析法之研究」,碩士論文,國立台灣科技大學營建工程系研究所。
    6.黃世倫(2014),「台北捷運深開挖案例之有限土體效應探討與分析」,碩士論文,國立台灣科技大學營建工程系研究所。
    7.郭家豪(2018),「深開挖有限土體影響因子分析及應用」,碩士論文,國立台灣科技大學營建工程系研究所。
    8.郭峻諺(2019),「以二維方法建立有限土體深開挖之一維簡化分析法」,碩士論文,國立台灣科技大學營建工程系研究所。
    9.詹絢存(2012),「以數值方法分析深開挖有限土體對土壓力之影響」,碩士論文,國立台灣科技大學營建工程系研究所。
    10.劉日晏(2013),「以數值方法探討有限土體對深開挖之影響」,碩士論文,國立台灣科技大學營建工程系研究所。
    11.廖元敬(2011),「深開挖有限土體分析模式評估與應用」,碩士論文,國立台灣科技大學營建工程系研究所。
    12.歐章煜(2017),「深開挖工程分析設計理論與實務」,科技圖書出版。
    13.Clough, G. W. and O’Rourke, T. D.. “Construction induced movements of in situ walls”, Specialty conference on design and performance of earth retaining structure 1990, pp 439-470(1990).
    14.Duncan, J.M. and Chang, C. Y..“Nonlinear analysis of stress and strain in soils”, Journal of the Soil Mechanics and Foundations Division, Vol. 96, No.5, pp.637-659(1970).
    15.Iwasa, Aoki and Kono,. “Study lateral pressure on earth retaining wall based on measured lateral displacement near the adjacent structure”, 地盤工學研究發表會,日本,第41回,p1643-1644(2006).
    16.Hsieh,P.G., and Ou,C.Y., “Shape of Ground Surface Setlement Profiles Caused by Excavation“, Canadian Geotechnical Journal, Vol.35, No.6, pp.1004-1017(1998).
    17.Kono, Takao and Aoki., “Measurement result of lateral displacement and pressure of earth retaining wall near the adjacent structure,”Architectural institute of Japan, pp631-632(2005).
    18.Masuda,T., Einstein,H.H. and Mitachi,T., “Prediction of Lateral Deflection of Diaphragm Wall in Deep Excavation“, Journal of Geotechnical Engineering, Proceedings of Japan Society of Civil Engineering, ASCE, No.505, III-29, pp.19-29(1994).
    19.Mohamad Khoiri., Ou C.Y.(2013) “Evaluation of deformation parameter for deep excavation in sand through case histories”, Computers and Geotechnics 47,pp57-67.
    20.PLAXIS2D, (2017).“2017-Material Models Manual”.
    21.Ou, C. Y., Hsieh, P. G. and Chiou, D. C..“Characteristics of Ground Surface Settlement During Excavation,” Canadian Geotechnical Journal, Vol.30, pp.758-767(1993) .
    22.Ou,C.Y., Chiou,D.C., and Wu,T.S., “Three-dimensional finite element analysis of deep excavations“, ASCE, Vol122, No.5, pp.337-345(1996).
    23.Ou, C.Y., Liao, J.T., and Lin, H.D.. “Performance of diaphragm wall constructed using top-down method.” Journalof Geotechnical and Geoenvironmental Engineering, ASCE , Vol.124, No.9, pp 987–808(1998).
    24.Ou C.Y., Hsieh P.G, “A simplifield method for predicting ground settlement profiles induced by excavation in soft clay”, Computer and Geotechnics 38, pp987-997(2011).
    25.Ou C.Y., Chiou, D.C., and Wu, T.S.(2016). “Three-dimensional finite element analysis of deep excavations “, J.Geotech. Engrg, 122(5):pp337-345.
    26.Schanz,T., Vermeer,P.A..“Special issue on Pre-failure deformation behavior of geomaterials”, Geotechnique 48, pp.383-387(1998).

    無法下載圖示 全文公開日期 2024/08/10 (校內網路)
    全文公開日期 2024/08/10 (校外網路)
    全文公開日期 2024/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE