簡易檢索 / 詳目顯示

研究生: 蔡孟哲
Mon-che Tsai
論文名稱: 第一原理計算應用於電化學觸媒材料設計
First-principles computation applied in materials design for electrocatalytic reactions
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
楊明長
Ming-Chang Yang
江志強
Jyh-Chiang Jiang
林昇佃
Shawn-Diann Lin
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 163
中文關鍵詞: 材料設計材料篩選密度泛函理論二氧化鈦電子導電度雙功能機制雙氧水氧化雙元金屬d軌域中心
外文關鍵詞: material design, material screening, density functional theory, electrical conductivity, bi-functional, H2O2 oxidation, bimetallic, d-band center, Pt-based catalyst
相關次數: 點閱:537下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於計算材料科學的準確性和實用性,經常用來開發新的能源材料。使用高通量(High-throughput)的計算方法,對於新材料的尋找以及深層物理化學現象的理解,已具有相當多的貢獻。這篇論文的主要目的是使用理論模擬方法對特定的材料和應用進行深入探索,並藉由準則的建立,以達到材料篩選的目的。本論文之主要研究方向有: (I) 高通量計算方法應用於甲醇氧化反應(Methanol Oxidation Reaction, MOR)和氧氣還原反應(Oxygen Reduction Reaction. ORR)非碳載體觸媒之篩選;(II) 應用組合計算和實驗的方法,開發用於雙氧水氧化反應的雙金屬合金觸媒。分別敘述如下:
    (I) 高通量計算方法應用於甲醇氧化反應和氧氣還原反應非碳載體觸媒之篩選: 高通量計算方法於材料篩選是一種新興的材料科學領域。本研究在密度泛函理論計算的基礎上,結合電子結構和熱力學性質的結果進行過渡金屬摻雜的二氧化鈦載體(anatase-TiMO2)材料之特性預測,並尋找以二氧化鈦為主的非碳載體材料,應用於燃料電池中之甲醇氧化反應和氧氣還原反應。對於金屬氧化物載體觸媒的關鍵需求為良好導電度、反應性及穩定性,透過能隙間中間態的形成、氧空缺產生能、Pt吸附能和Pt電荷變化,可以篩選出具有潛力的新觸媒材料。一個具備良好導電性的載體於電化學反應是不可或缺的,Mn、Fe、等過渡金屬摻雜的二氧化鈦載體,由於預期其導電度改善較大,具有開發為非碳載體材料之潛力。結合氧空缺產生能和Pt吸附能的結果,可預期是否會發生金屬-擔體間之強作用力(Strong Metal-Support Interaction, SMSI)的現象,此導致承載Pt原子電荷的變化。經由獲得各個系統的關鍵性質及建立的準則,成功地建立用來篩選anatase-TiMO2載體材料的導引圖。通過此導引圖,可以篩選出很多具有可能提高MOR和ORR活性的非碳載體觸媒系統。此外通過與實驗結果的直接比較,我們期望第一原理計算可以有效地幫助加快設計和開發以二氧化鈦為主的非碳載體觸媒。
    (II) 應用組合計算和實驗的方法,開發用於雙氧水氧化反應的雙金屬合金觸媒:在密度泛函理論計算的基礎上,本文成功地提出一種方法來篩選最佳的Pt-M雙金屬觸媒,並由實驗驗證其可靠性。基於雙功能反應機制的基礎上,本文以吸附在第二元金屬(M)上的氫氧基吸附強度為準則,從一系列Pt-M雙元金屬系統中篩選出可能的雙金屬觸媒系統。進而對其表面Pt d軌域中心(d-band center, εd)和脫氫動力學的反應能障進行了計算,用於尋求最佳的觸媒。結果顯示,從Pt d軌域中心和反應能障之間,可找到一火山型的關係,這意味著表面Pt原子d軌域的轉變強烈地影響雙氧水的脫氫動力學。這表明,一個適用於雙氧水氧化反應的Pt-M觸媒應該具備中等強度的氫氧基吸附與合適的Pt εd。來自運算結果給予的靈感,我們使用修飾Watanabe方法合成碳承載的不同Pt-M觸媒,並進行雙氧水氧化反應測試,其結果發現,Pt-Pd/C表現出優異的催化活性。此實驗的結果與計算的結果相符,說明本文發展的方法,提供一種快速設計開發應用於雙氧水氧化反應之Pt-M雙元金屬觸媒,並得以進一步探索新的催化觸媒。


    In recent years, computational material science was frequently used to develop new energy materials due to its outstanding accuracy and practicability. Much effort has been done using computational high-throughput method toward the search of new materials as well as deep understanding of physical and chemical phenomena. In this thesis, our main purpose is that using the computational approach to intensively explore the descriptors for specific materials and applications, and achieve the goal of material screening. The followings are the research topics addressed in this dissertation: (I) Computational high-throughput method to screen non-carbon support applied in methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR); (II) Combined computational and experimental approach to develop the bimetallic alloying catalysts applied in H2O2 oxidation reaction.
    (I) Computational high-throughput method to screen non-carbon support applied in MOR and ORR: Material screening via computational high-throughput method is an emerging area of materials science. In this study, a methodology based on density functional theory (DFT) calculations was proposed to search TiO2-based non-carbon support materials for fuel cells applications, MOR and ORR, in which the predictions of material properties were carried out by combining electronic structures and thermodynamic results. Several key requirements for the metal oxide supports are good electrical conductivity, reactivity and stability, and we can screen new potential catalyst materials from forming the intermediate states, oxygen vacancy formation energy, Pt adsorption energy and charge variation of deposited Pt. Based on the electrochemical reaction, a support material with good electrical conductivity is a vital criterion, and some anatase-TiMO2 support materials are thus selected to be the available candidates due to much improved electrical conductivity. Combination of oxygen vacancy formation energy and Pt adsorption behavior indicates the place where the strong metal-support interaction (SMSI) occurs, resulting in the variations of the deposited Pt charge. The results of the key requirements are collected by establishing the rules, and then drawing a guide map for screening the available anatase-TiMO2 support materials. Eventually, through the guide map, we can find many non-carbon supports that have the potential to enhance the activity of MOR and ORR. In addition, by direct comparison with experimental observations, we expect that first-principle computational materials screening can efficiently accelerate the design and development of the TiO2-based non-carbon catalysts.
    (II) Combined computational and experimental approach to develop the bimetallic alloying catalysts applied in H2O2 oxidation reaction: Using a combined computational and experimental approach to develop a noble metal based catalyst for H2O2 oxidation reaction. A methodology based on DFT calculations was successfully proposed to search for an optimal Pt-M bimetallic catalyst, which was then verified experimentally. In this study, based on the bi-functional mechanism, a series of Pt-M bimetallic systems were first chosen as possible candidates due to the binding strength of the OH group on the second metal (M). The surface Pt d-band center (εd) and the energy barrier with respect to the dehydrogenation kinetics of the chosen bimetallic systems were calculated and used to find an optimal catalyst. A volcano-type relationship between the Pt εd and the energy barrier was found, which implied that a shift in the d-band of surface Pt atoms strongly influences the dehydrogenation kinetics of H2O2. This suggests that an appropriate Pt-based catalyst for H2O2 oxidation should correlate moderate OH adsorption with the middle of the Pt εd. From the inspiration given by the computation results, different carbon-supported Pt-M catalysts were synthesized using a modified Watanabe process and tested for H2O2 oxidation. It was found that Pt-Pd/C demonstrated excellent catalytic activity. The experimental results were in good agreement with computational predications suggesting that the methodology developed for designing Pt-based bimetallic catalysts provides a fast approach to further exploring new catalysts.

    摘要 Abstract (English) 致謝 List of Figures List of Tables List of Acronyms Chapter 1 General Introduction 1.1 Overview regarding computational material science (CMS) 1.2 Connection between CMS and energy materials 1.3 The role of simulation-based engineering and science 1.4 Foundational challenges in predictive materials science and chemistry 1.4.1 Materials for extreme conditions: Controlling microstructures 1.4.2 Controlling chemical reactions: Combustion and catalysis 1.4.3 Designer interfaces: From interfacial materials to advanced batteries 1.4.4 Controlling electronic structure: Modeling strongly correlated electrons 1.5 High-throughput way to computational materials design 1.6 Aims and objective of this thesis Chapter 2 Methodology 2.1 Computational detail for the search of TiO2-based support materials 2.2 Design of the Pt-based bimetallic catalysts for H2O2 oxidation 2.2.1 Computational method 2.2.2 Experimental section 2.2.2.1 Preparation of carbon supported catalysts: Pt/C, Pt-Pd/C, Pt-Ru/C, Pt-Ir/C and Pt-Au/C 2.2.2.2 Electrode preparation and electrochemical measurements 2.2.2.3 Electroanalysis of H2O2 sensing Chapter 3 Design of transition-metal-doped TiO2 as support for fuel cells applications: A high-throughput material screening using computational approach 3.1 Overview regarding fuel cells 3.1.1 Direct methanol fuel cells (DMFCs) and proton exchange membrane fuel cells (PEMFCs) 3.1.1.1 Operating Principle of Fuel cells 3.1.2 Facing issues in fuel cells 3.1.1.1 Platinum degradation 3.1.1.2 Carbon support degradation 3.1.3 Role of supports for activity and stability of fuel cells catalysts 3.1.1.1 Support effects on oxygen reduction reaction (ORR) catalysis 3.1.1.2 Support effects on methanol oxidation reaction (MOR) catalysis 3.1.4 Computational approaches in the energy material: metal/metal oxide interface 3.1.1.1 Thermodynamic properties 3.1.1.2 Electronic properties 3.1.1.3 Reaction kinetic considerations 3.1.5 Motivation of this research 3.2 Results and discussion 3.2.1 Electronic structure of anatase-TiMO2 3.2.2 Formation energy of oxygen vacancy for anatase-TiMO2 3.2.3 Adsorption energy of the single Pt atom on anatase-TiMO2 3.2.4 Charge state of deposited Pt atom 3.2.5 Guide map for material screening 3.3 Summary Chapter 4 Design of Pt-based bimetallic alloys for H2O2 oxidation: A combined computational and experimental approach 4.1 Introduction for chemical sensors and biosensors 4.1.1 Chemical sensors and biosensors definition 4.2 Hydrogen peroxide (H2O2) biosensor and its importance 4.3 Glucose biosensor and its importance 4.3.1 Diabetes status 4.3.2 Evolution of glucose biosensor 4.3.2.1 First generation glucose sensor 4.3.2.2 Second generation glucose sensor 4.3.2.3 Third generation glucose sensor 4.3.2.4 Fourth generation glucose sensor 4.4 Metal catalysts used in H2O2 biosensor 4.4.1 Study regarding bimetallic catalysts in H2O2 oxidation reaction 4.4.2 Motivation of this research 4.5 Results and discussion 4.5.1 Adsorption of reaction intermediates on Pt(111) and Pt-M(111) surfaces 4.5.2 The calculated d-band center 4.5.3 Energy barrier of H2O2 oxidation 4.5.3.1 Potential energy surface for Pt(111) 4.5.3.2 Potential energy surface for Pt-M(111) 4.5.4 Experimental verification: electroanalysis of H2O2 oxidation reaction 107 4.6 Summary Chapter 5 Conclusion Chapter 6 Recommendation for future research References Appendix

    Harmon, B. N. Computational materials science: challenges, opportunities, Journal of Physics: Conference Series 2005, 16, 273.
    2. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat Mater 2006, 5, 909.
    3. Crabtree, G.; Glotzer, S.; McCurdy, B.; Roberto, J. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science, Department of Energy Workshop, 2010.
    4. Setyawan, W.; Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools, Computational Materials Science 2010, 49, 299.
    5. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries, Nat Chem 2011, 3, 546.
    6. Lin, L.-C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. In silico screening of carbon-capture materials, Nat Mater 2012, 11, 633.
    7. Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design, Nat Mater 2013, 12, 191.
    8. Curtarolo, S.; Morgan, D.; Persson, K.; Rodgers, J.; Ceder, G. Predicting Crystal Structures with Data Mining of Quantum Calculations, Physical Review Letters 2003, 91, 135503.
    9. Curtarolo, S.; Setyawan, W.; Wang, S.; Xue, J.; Yang, K.; Taylor, R. H.; Nelson, L. J.; Hart, G. L. W.; Sanvito, S.; Buongiorno-Nardelli, M.; Mingo, N.; Levy, O. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, Computational Materials Science 2012, 58, 227.
    10. Jain, A.; Hautier, G.; Moore, C. J.; Ping Ong, S.; Fischer, C. C.; Mueller, T.; Persson, K. A.; Ceder, G. A high-throughput infrastructure for density functional theory calculations, Computational Materials Science 2011, 50, 2295.
    11. Wang, S.; Wang, Z.; Setyawan, W.; Mingo, N.; Curtarolo, S. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations, Physical Review X 2011, 1, 021012.
    12. Koinuma, H.; Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials, Nat Mater 2004, 3, 429.
    13. Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skulason, E.; Bligaard, T.; Norskov, J. K. Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces, Physical Review Letters 2007, 99, 016105.
    14. Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts, Nat Chem 2009, 1, 37.
    15. Norskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis, Proceedings of the National Academy of Sciences 2011, 108, 937.
    16. Norskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, C. J. H. Universality in Heterogeneous Catalysis, Journal of Catalysis 2002, 209, 275.
    17. Bligaard, T.; Norskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Bronsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis, Journal of Catalysis 2004, 224, 206.
    18. Andersson, M. P.; Bligaard, T.; Kustov, A.; Larsen, K. E.; Greeley, J.; Johannessen, T.; Christensen, C. H.; Norskov, J. K. Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts, Journal of Catalysis 2006, 239, 501.
    19. Sehested, J.; Larsen, K.; Kustov, A.; Frey, A.; Johannessen, T.; Bligaard, T.; Andersson, M.; Norskov, J.; Christensen, C. Discovery of technical methanation catalysts based on computational screening, Top Catal 2007, 45, 9.
    20. Norskov, J. K.; Abild-Pedersen, F. Catalysis: Bond control in surface reactions, Nature 2009, 461, 1223.
    21. Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H.; Liu, P.; Norskov, J. K. High Throughput Experimental and Theoretical Predictive Screening of Materials − A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts, The Journal of Physical Chemistry B 2003, 107, 11013.
    22. Linic, S.; Jankowiak, J.; Barteau, M. A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles, Journal of Catalysis 2004, 224, 489.
    23. Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles, Nat Mater 2004, 3, 810.
    24. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sorensen, R. Z.; Christensen, C. H.; Norskov, J. K. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene, Science 2008, 320, 1320.
    25. GreeleyJ; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; RossmeislJ; ChorkendorffI; Norskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat Chem 2009, 1, 552.
    26. Greeley, J.; Norskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations, Electrochimica Acta 2007, 52, 5829.
    27. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, Angewandte Chemie 2005, 117, 2170.
    28. Tsai, M.-C.; Rick, J.; Hwang , B.-J. Design of Pt-Based Bimetallic Alloys for the Oxidation of H2O2: A Combined Computational and Experimental Approach, ChemCatChem 2013, 5, 1709.
    29. Xiang, X.-D.; Sun, X.; Briceno, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G. A Combinatorial Approach to Materials Discovery, Science 1995, 268, 1738.
    30. Spivack, J. L.; Cawse, J. N.; Whisenhunt Jr, D. W.; Johnson, B. F.; Shalyaev, K. V.; Male, J.; Pressman, E. J.; Ofori, J. Y.; Soloveichik, G. L.; Patel, B. P.; Chuck, T. L.; Smith, D. J.; Jordan, T. M.; Brennan, M. R.; Kilmer, R. J.; Williams, E. D. Combinatorial discovery of metal co-catalysts for the carbonylation of phenol, Applied Catalysis A: General 2003, 254, 5.
    31. Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M.; Lund, C.; Murphy, V.; Shoemaker, J. A. W.; Tracht, U.; Turner, H.; Zhang, J.; Uno, T.; Rosen, R. K.; Stevens, J. C. A Fully Integrated High-Throughput Screening Methodology for the Discovery of New Polyolefin Catalysts:  Discovery of a New Class of High Temperature Single-Site Group (IV) Copolymerization Catalysts, Journal of the American Chemical Society 2003, 125, 4306.
    32. Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H. Development of Combinatorial Chemistry Methods for Coatings:  High-Throughput Adhesion Evaluation and Scale-Up of Combinatorial Leads, Journal of Combinatorial Chemistry 2003, 5, 472.
    33. Radislav, A. P.; Ichiro, T. Role of high-throughput characterization tools in combinatorial materials science, Measurement Science and Technology 2005, 16, 1.
    34. Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y. I.; Huang, B. Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature 1998, 392, 694.
    35. Johannesson, G. H.; Bligaard, T.; Ruban, A. V.; Skriver, H. L.; Jacobsen, K. W.; Norskov, J. K. Combined Electronic Structure and Evolutionary Search Approach to Materials Design, Physical Review Letters 2002, 88, 255506.
    36. Stucke, D. P.; Crespi, V. H. Predictions of New Crystalline States for Assemblies of Nanoparticles:  Perovskite Analogues and 3-D Arrays of Self-Assembled Nanowires, Nano Letters 2003, 3, 1183.
    37. Dane, M.; Gerbrand, C.; Stefano, C. High-throughput and data mining with ab initio methods, Measurement Science and Technology 2005, 16, 296.
    38. Fischer, C. C.; Tibbetts, K. J.; Morgan, D.; Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics, Nat Mater 2006, 5, 641.
    39. Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 1996, 6, 15.
    40. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 1996, 54, 11169.
    41. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals, Physical Review B 1993, 47, 558.
    42. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B 1990, 41, 7892.
    43. Blochl, P. E. Projector augmented-wave method, Physical Review B 1994, 50, 17953.
    44. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics 1992, 64, 1045.
    45. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 1999, 59, 1758.
    46. Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}, Chemical Physics Letters 1994, 230, 501.
    47. Perdew, J. P. In Electronic Structure in Solids '91 Akademie Verlag:Berlin, 1991.
    48. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 1992, 46, 6671.
    49. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide:  An LSDA+U study, Physical Review B 1998, 57, 1505.
    50. Ortega, Y.; Hernandez, N. C.; Menendez-Proupin, E.; Graciani, J.; Sanz, J. F. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations, Physical Chemistry Chemical Physics 2011, 13, 11340.
    51. Calzado, C. J.; Hernandez, N. C.; Sanz, J. F. Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface, Physical Review B 2008, 77, 045118.
    52. Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring, Journal of Materials Chemistry 2010, 20, 831.
    53. Shao, G. Red Shift in Manganese- and Iron-Doped TiO2: A DFT+U Analysis, The Journal of Physical Chemistry C 2009, 113, 6800.
    54. Han, Y.; Liu, C.-j.; Ge, Q. Effect of Surface Oxygen Vacancy on Pt Cluster Adsorption and Growth on the Defective Anatase TiO2(101) Surface, The Journal of Physical Chemistry C 2007, 111, 16397.
    55. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford, 1990.
    56. Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics 2000, 113, 9901.
    57. Hwang, B. J.; Chen, C.-H.; Sarma, L. S.; Chen, J.-M.; Wang, G.-R.; Tang, M.-T.; Liu, D.-G.; Lee, J.-F. Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt−Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy, The Journal of Physical Chemistry B 2006, 110, 6475.
    58. Bossel, U. The Birth of the Fuel Cell 1835 - 1845, 1st ed, 2000.
    59. Ledjeff, K. Brennstoffzellen: Entwicklung - Technologie–Anwendung. 1st ed., 1995.
    60. Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells, Nature 2006, 443, 63.
    61. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies, Nature 2001, 414, 345.
    62. Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Metal-Nanocluster-Filled Carbon Nanotubes:  Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir 1999, 15, 750.
    63. Hyeon, T.; Han, S.; Sung, Y.-E.; Park, K.-W.; Kim, Y.-W. High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angewandte Chemie International Edition 2003, 42, 4352.
    64. Liao, S.; Holmes, K.-A.; Tsaprailis, H.; Birss, V. I. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol, Journal of the American Chemical Society 2006, 128, 3504.
    65. Gu, Y.-J.; Wong, W.-T. Nanostructure PtRu/MWNTs as Anode Catalysts Prepared in a Vacuum for Direct Methanol Oxidation, Langmuir 2006, 22, 11447.
    66. Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today 1997, 38, 445.
    67. Williams, K. R.; Burstein, G. T. Low temperature fuel cells: Interactions between catalysts and engineering design, Catalysis Today 1997, 38, 401.
    68. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Aspects of the anodic oxidation of methanol, Catalysis Today 1997, 38, 425.
    69. Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity, Journal of the American Chemical Society 2011, 133, 9674.
    70. Kloke, A.; von Stetten, F.; Zengerle, R.; Kerzenmacher, S. Strategies for the Fabrication of Porous Platinum Electrodes, Advanced Materials 2011, 23, 4976.
    71. Wang, C.; Tian, W.; Ding, Y.; Ma, Y.-q.; Wang, Z. L.; Markovic, N. M.; Stamenkovic, V. R.; Daimon, H.; Sun, S. Rational Synthesis of Heterostructured Nanoparticles with Morphology Control, Journal of the American Chemical Society 2010, 132, 6524.
    72. Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal, Angewandte Chemie International Edition 2011, 50, 422.
    73. Lim, B.; Yu, T.; Xia, Y. Shaping a Bright Future for Platinum-Based Alloy Electrocatalysts, Angewandte Chemie International Edition 2010, 49, 9819.
    74. Zhou, Z.-Y.; Huang, Z.-Z.; Chen, D.-J.; Wang, Q.; Tian, N.; Sun, S.-G. High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation, Angewandte Chemie International Edition 2010, 49, 411.
    75. Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H. Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts, Journal of the American Chemical Society 2010, 132, 4984.
    76. Gao, M.-R.; Gao, Q.; Jiang, J.; Cui, C.-H.; Yao, W.-T.; Yu, S.-H. A Methanol-Tolerant Pt/CoSe2 Nanobelt Cathode Catalyst for Direct Methanol Fuel Cells, Angewandte Chemie International Edition 2011, 50, 4905.
    77. Ma, J.; Choudhury, N. A.; Sahai, Y. A comprehensive review of direct borohydride fuel cells, Renewable and Sustainable Energy Reviews 2010, 14, 183.
    78. Dillon, R.; Srinivasan, S.; Arico, A. S.; Antonucci, V. International activities in DMFC R&D: status of technologies and potential applications, Journal of Power Sources 2004, 127, 112.
    79. Kakac, S.; Pramuanjaroenkij, A.; Vasiliev, L. Mini-Micro Fuel Cells: Fundamentals and Applications; Springer, 2007.
    80. Barbir, F. PEM Fuel CellsTheory and Practice; Elsevier, 2005.
    81. Kua, J.; Goddard, W. A. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):  Application to Direct Methanol Fuel Cells, Journal of the American Chemical Society 1999, 121, 10928.
    82. Rousseau, S.; Marie, O.; Bazin, P.; Daturi, M.; Verdier, S.; Harle, V. Investigation of Methanol Oxidation over Au/Catalysts Using Operando IR Spectroscopy: Determination of the Active Sites, Intermediate/Spectator Species, and Reaction Mechanism, Journal of the American Chemical Society 2010, 132, 10832.
    83. Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode, Journal of the American Chemical Society 2003, 125, 3680.
    84. Lin, W. F.; Wang, J. T.; Savinell, R. F. On‐Line FTIR Spectroscopic Investigations of Methanol Oxidation in a Direct Methanol Fuel Cell, Journal of The Electrochemical Society 1997, 144, 1917.
    85. Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources 2005, 152, 1.
    86. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K. Unifying the 2e– and 4e– Reduction of Oxygen on Metal Surfaces, The Journal of Physical Chemistry Letters 2012, 3, 2948.
    87. Min, M.-k.; Cho, J.; Cho, K.; Kim, H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochimica Acta 2000, 45, 4211.
    88. Takako, T.; Hiroshi, I.; Hiroyuki, U.; Masahiro, W. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, Journal of The Electrochemical Society 1999, 146, 3750.
    89. Kathi Epping, M.; John, P. K.; Kevin, W. M. In Fuel Cell Chemistry and Operation; American Chemical Society: 2010; Vol. 1040, p 1.
    90. Wang, Y.-J.; Wilkinson, D. P.; Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts, Chemical Reviews 2011, 111, 7625.
    91. Virkar, A. V.; Zhou, Y. Mechanism of Catalyst Degradation in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society 2007, 154, B540.
    92. Knights, S. D.; Colbow, K. M.; St-Pierre, J.; Wilkinson, D. P. Aging mechanisms and lifetime of PEFC and DMFC, Journal of Power Sources 2004, 127, 127.
    93. Wu, J.; Yuan, X. Z.; Martin, J. J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources 2008, 184, 104.
    94. Roen, L. M.; Paik, C. H.; Jarvi, T. D. Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes, Electrochemical and Solid-State Letters 2004, 7, A19.
    95. Ioroi, T.; Siroma, Z.; Fujiwara, N.; Yamazaki, S.-i.; Yasuda, K. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells, Electrochemistry Communications 2005, 7, 183.
    96. Lee, K.-S.; Park, I.-S.; Cho, Y.-H.; Jung, D.-S.; Jung, N.; Park, H.-Y.; Sung, Y.-E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells, Journal of Catalysis 2008, 258, 143.
    97. Debe, M. K.; Schmoeckel, A. K.; Vernstrom, G. D.; Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells, Journal of Power Sources 2006, 161, 1002.
    98. Kong, D.-S.; Wu, J.-X. An Electrochemical Study on the Anodic Oxygen Evolution on Oxide Film Covered Titanium, Journal of The Electrochemical Society 2008, 155, C32.
    99. Chen, G.; Bare, S. R.; Mallouk, T. E. Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells, Journal of The Electrochemical Society 2002, 149, A1092.
    100. Park, K.-W.; Seol, K.-S. Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells, Electrochemistry Communications 2007, 9, 2256.
    101. Shao, Y.; Wang, J.; Kou, R.; Engelhard, M.; Liu, J.; Wang, Y.; Lin, Y. The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts, Electrochimica Acta 2009, 54, 3109.
    102. Subban, C.; Zhou, Q.; Leonard, B.; Ranjan, C.; Edvenson, H. M.; DiSalvo, F. J.; Munie, S.; Hunting, J. Catalyst supports for polymer electrolyte fuel cells, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368, 3243.
    103. Antolini, E. Composite materials: An emerging class of fuel cell catalyst supports, Applied Catalysis B: Environmental 2010, 100, 413.
    104. Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, Journal of the American Chemical Society 1978, 100, 170.
    105. Moghaddam, R. B.; Pickup, P. G. Support effects on the oxidation of methanol at platinum nanoparticles, Electrochemistry Communications 2011, 13, 704.
    106. Liu, X.; Liu, M.-H.; Luo, Y.-C.; Mou, C.-Y.; Lin, S. D.; Cheng, H.; Chen, J.-M.; Lee, J.-F.; Lin, T.-S. Strong Metal–Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation, Journal of the American Chemical Society 2012, 134, 10251.
    107. Li, Y.; Fan, Y.; Yang, H.; Xu, B.; Feng, L.; Yang, M.; Chen, Y. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2, Chemical Physics Letters 2003, 372, 160.
    108. Lai, F.-J.; Sarma, L. S.; Chou, H.-L.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J. Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C 2009, 113, 12674.
    109. Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review, Fuel Cells 2001, 1, 105.
    110. Hwang, B. J.; Kumar, S. M. S.; Chen, C.-H.; Monalisa; Cheng, M.-Y.; Liu, D.-G.; Lee, J.-F. An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction, The Journal of Physical Chemistry C 2007, 111, 15267.
    111. Coq, B.; Figueras, F. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance, Journal of Molecular Catalysis A: Chemical 2001, 173, 117.
    112. Lin, Y.-C.; Chou, H.-L.; Tsai, M.-C.; Hwang, B.-J.; Sarma, L. S.; Lee, Y.-C.; Chen, C.-I. Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Catalyst on Their Underlying Methanol Electro-Oxidation Activity, The Journal of Physical Chemistry C 2009, 113, 9197.
    113. Sugawara, S.; Tsujita, K.; Mitsushima, S.; Shinohara, K.; Ota, K.-i. Simultaneous Electrochemical Measurement of Oxygen Reduction and Pt Oxide Formation/Reduction on Pt Nanoparticle Surface, Electrocatal 2011, 2, 60.
    114. Rigsby, M. A.; Zhou, W.-P.; Lewera, A.; Duong, H. T.; Bagus, P. S.; Jaegermann, W.; Hunger, R.; Wieckowski, A. Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru, The Journal of Physical Chemistry C 2008, 112, 15595.
    115. Tong; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst, Journal of the American Chemical Society 2001, 124, 468.
    116. Okanishi, T.; Matsui, T.; Takeguchi, T.; Kikuchi, R.; Eguchi, K. Chemical interaction between Pt and SnO2 and influence on adsorptive properties of carbon monoxide, Applied Catalysis A: General 2006, 298, 181.
    117. Liu, Z.; Guo, B.; Hong, L.; Lim, T. H. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation, Electrochemistry Communications 2006, 8, 83.
    118. Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces, Surface Science Reports 2007, 62, 431.
    119. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets, Nature 2008, 453, 638.
    120. Escamilla-Roa, E.; Timon, V.; Hernandez-Laguna, A. DFT study of the adsorption of Ni on Anatase (001) surface, Computational and Theoretical Chemistry 2012, 981, 59.
    121. Mayernick, A. D.; Janik, M. J. Methane Activation and Oxygen Vacancy Formation over CeO2 and Zr, Pd Substituted CeO2 Surfaces, The Journal of Physical Chemistry C 2008, 112, 14955.
    122. Roldan, A.; Boronat, M.; Corma, A.; Illas, F. Theoretical Confirmation of the Enhanced Facility to Increase Oxygen Vacancy Concentration in TiO2 by Iron Doping, The Journal of Physical Chemistry C 2010, 114, 6511.
    123. Nolan, M. Charge Compensation and Ce3+ Formation in Trivalent Doping of the CeO2(110) Surface: The Key Role of Dopant Ionic Radius, The Journal of Physical Chemistry C 2011, 115, 6671.
    124. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, Journal of Physics and Chemistry of Solids 2002, 63, 1909.
    125. Rubio-Ponce, A.; Conde-Gallardo, A.; Olguin, D. First-principles study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+U calculations, Physical Review B 2008, 78, 035107.
    126. Kamisaka, H.; Suenaga, T.; Nakamura, H.; Yamashita, K. DFT-Based Theoretical Calculations of Nb- and W-Doped Anatase TiO2: Complex Formation between W Dopants and Oxygen Vacancies, The Journal of Physical Chemistry C 2010, 114, 12777.
    127. Long, R.; English, N. J. Electronic properties of F/Zr co-doped anatase TiO2 photocatalysts from GGA+U calculations, Chemical Physics Letters 2010, 498, 338.
    128. Chen, Q. L.; Li, B.; Zheng, G.; He, K. H.; Zheng, A. S. First-principles calculations on electronic structures of Fe-vacancy-codoped TiO2 anatase (101) surface, Physica B: Condensed Matter 2011, 406, 3841.
    129. Pacchioni, G. Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements, The Journal of Chemical Physics 2008, 128, 182505.
    130. Heine, V. Theory of Surface States, Physical Review 1965, 138, A1689.
    131. Louie, S. G.; Cohen, M. L. Electronic structure of a metal-semiconductor interface, Physical Review B 1976, 13, 2461.
    132. Tersoff, J. Schottky Barrier Heights and the Continuum of Gap States, Physical Review Letters 1984, 52, 465.
    133. Tamura, T.; Ishibashi, S.; Terakura, K.; Weng, H. First-principles study of the rectifying properties of Pt/TiO2 interface, Physical Review B 2009, 80, 195302.
    134. Zuo, Z.; Huang, W.; Han, P.; Li, Z.; Huang, J. A DFT study on the interaction of Co with an anatase TiO2 (001)-(1×4) surface, Journal of Natural Gas Chemistry 2009, 18, 78.
    135. Celik, V.; Unal, H.; Mete, E.; Ellialtıoğlu, Ş. Theoretical analysis of small Pt particles on rutile TiO2(110) surfaces, Physical Review B 2010, 82, 205113.
    136. Cao, P. L.; Ellis, D. E.; Dravid, V. P. First-principles study of initial stage of Ni thin-film growth on a TiO2(110) surface, Journal of Materials Research 1999, 14, 3684.
    137. Wang, Y.; Hwang, G. S. Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces: a first principles study, Surface Science 2003, 542, 72.
    138. Worz, A. S.; Heiz, U.; Cinquini, F.; Pacchioni, G. Charging of Au Atoms on TiO2 Thin Films from CO Vibrational Spectroscopy and DFT Calculations, The Journal of Physical Chemistry B 2005, 109, 18418.
    139. Chretien, S.; Metiu, H. Density functional study of the interaction between small Au clusters, Aun (n = 1-7) and the rutile TiO2 surface. I. Adsorption on the stoichiometric surface, The Journal of Chemical Physics 2007, 127, 084704.
    140. Ammal, S. C.; Heyden, A. Modeling the noble metal/TiO2(110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study, The Journal of Chemical Physics 2010, 133, 164703.
    141. Ong, S. V.; Khanna, S. N. Origin of Oxidation and Support-Induced Structural Changes in Pd4 Clusters Supported on TiO2, The Journal of Physical Chemistry C 2011, 115, 20217.
    142. Zhang, J.; Alexandrova, A. N. Structure, stability, and mobility of small Pd clusters on the stoichiometric and defective TiO2(110) surfaces, The Journal of Chemical Physics 2011, 135, 174702.
    143. Castellani, N. J.; Branda, M. a. M.; Neyman, K. M.; Illas, F. Density Functional Theory Study of the Adsorption of Au Atom on Cerium Oxide: Effect of Low-Coordinated Surface Sites, The Journal of Physical Chemistry C 2009, 113, 4948.
    144. Branda, M. a. M.; Hernandez, N. C.; Sanz, J. F.; Illas, F. Density Functional Theory Study of the Interaction of Cu, Ag, and Au Atoms with the Regular CeO2(111) Surface, The Journal of Physical Chemistry C 2010, 114, 1934.
    145. Bruix, A.; Neyman, K. M.; Illas, F. Adsorption, Oxidation State, and Diffusion of Pt Atoms on the CeO2(111) Surface, The Journal of Physical Chemistry C 2010, 114, 14202.
    146. Szabova, L.; Camellone, M. F.; Huang, M.; Matolin, V.; Fabris, S. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT + U calculations, The Journal of Chemical Physics 2010, 133, 234705.
    147. Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skala, T.; Bruix, A.; Illas, F.; Prince, K. C.; Matolı’n, V. r.; Neyman, K. M.; Libuda, J. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles, Nat Mater 2011, 10, 310.
    148. Yang, Z.; Xie, L.; Ma, D.; Wang, G. Origin of the High Activity of the Ceria-Supported Copper Catalyst for H2O Dissociation, The Journal of Physical Chemistry C 2011, 115, 6730.
    149. Sanz, J. F.; Marquez, A. Adsorption of Pd Atoms and Dimers on the TiO2(110) Surface:  A First Principles Study, The Journal of Physical Chemistry C 2007, 111, 3949.
    150. Strunk, J.; Vining, W. C.; Bell, A. T. A Study of Oxygen Vacancy Formation and Annihilation in Submonolayer Coverages of TiO2 Dispersed on MCM-48, The Journal of Physical Chemistry C 2010, 114, 16937.
    151. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure, Angewandte Chemie International Edition 2006, 45, 2897.
    152. Lobo, A.; Conrad, H. Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS, Surface Science 2003, 523, 279.
    153. Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects, Surface Science Reports 1987, 7, 211.
    154. Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University: Cambridge, 1994.
    155. Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited, Surface Science Reports 2002, 46, 1.
    156. Henderson, M. A.; Joyce, S. A.; Rustad, J. R. Interaction of water with the (1×1) and (2×1) surfaces of α-Fe2O3(012), Surface Science 1998, 417, 66.
    157. Zwicker, G.; Jacobi, K. Site-specific interaction of H2O with ZnO single-crystal surfaces studied by thermal desorption and UV photoelectron spectroscopy, Surface Science 1983, 131, 179.
    158. Gercher, V. A.; Cox, D. F. Water adsorption on stoichiometric and defective SnO2(110) surfaces, Surface Science 1995, 322, 177.
    159. Hugenschmidt, M. B.; Gamble, L.; Campbell, C. T. The interaction of H2O with a TiO2(110) surface, Surface Science 1994, 302, 329.
    160. Henderson, M. A.; Chambers, S. A. HREELS, TPD and XPS study of the interaction of water with the α-Cr2O3(001) surface, Surface Science 2000, 449, 135.
    161. Henderson, M. A. An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption, Surface Science 1996, 355, 151.
    162. Muryn, C. A.; Hardman, P. J.; Crouch, J. J.; Raiker, G. N.; Thornton, G.; Law, D. S. L. Step and point defect effects on TiO2(100) reactivity, Surface Science 1991, 251–252, 747.
    163. Toledano, D. S.; Metcalf, P.; Henrich, V. E. Photoemission studies of H2O adsorption on pure and Cr-doped V2O3, Surface Science 2001, 472, 21.
    164. Warren, S.; Flavell, W. R.; Thomas, A. G.; Hollingworth, J.; Dunwoody, P. M.; Downes, S.; Chen, C. Adsorption of H2O on single crystal CuO, Surface Science 1999, 436, 1.
    165. Kendelewicz, T.; Doyle, C. S.; Carrier, X.; Brown, G. E. Reaction of Water with Clean Surfaces of MnO(100), Surface Review and Letters 1999, 06, 1255.
    166. Lu, G.; Linsebigler, A.; Yates, J. T. Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites, The Journal of Physical Chemistry 1994, 98, 11733.
    167. Huang, S.-Y.; Ganesan, P.; Popov, B. N. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells, Applied Catalysis B: Environmental 2010, 96, 224.
    168. Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J. Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction, Journal of the American Chemical Society 2011, 133, 11716.
    169. Thanh Ho, V. T.; Pillai, K. C.; Chou, H.-L.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J.; Lee, J.-F.; Sheu, H.-S.; Chuang, W.-T. Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells, Energy & Environmental Science 2011, 4, 4194.
    170. Wang, D.; Subban, C. V.; Wang, H.; Rus, E.; DiSalvo, F. J.; Abruna, H. D. Highly Stable and CO-Tolerant Pt/Ti0.7W0.3O2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells, Journal of the American Chemical Society 2010, 132, 10218.
    171. Subban, C. V.; Zhou, Q.; Hu, A.; Moylan, T. E.; Wagner, F. T.; DiSalvo, F. J. Sol−Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells, Journal of the American Chemical Society 2010, 132, 17531.
    172. Tran Minh C. Biosensors; CHAPMAN & HALL: London, 1993.
    173. Diamond, D. Principles of Chemical and Biological Sensors; John Wiley and Sons, Inc.: New York, 1998; Vol. 150.
    174. Turner, A. P. F.; Karube, I.; Wilson, G. S. Biosensors: Fundamentals and applications; Oxford university: Oxford, 1987.
    175. Tsiafoulis, C. G.; Trikalitis, P. N.; Prodromidis, M. I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2, Electrochemistry Communications 2005, 7, 1398.
    176. Geiszt, M.; Leto, T. L. The Nox Family of NAD(P)H Oxidases: Host Defense and Beyond, Journal of Biological Chemistry 2004, 279, 51715.
    177. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nat Rev Mol Cell Biol 2007, 8, 722.
    178. Laloi, C.; Apel, K.; Danon, A. Reactive oxygen signalling: the latest news, Current Opinion in Plant Biology 2004, 7, 323.
    179. He, F.; Tang, Y.; Yu, M.; Wang, S.; Li, Y.; Zhu, D. Fluorescence-Amplifying Detection of Hydrogen Peroxide with Cationic Conjugated Polymers, and Its Application to Glucose Sensing, Advanced Functional Materials 2006, 16, 91.
    180. Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosensors and Bioelectronics 2006, 21, 1887.
    181. American Diabetes Association, Self-Monitoring of Blood Glucose, Diabetes Care 1994, 17, 81.
    182. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care 2004, 27, 1047.
    183. Gosali, B., National Taiwan University of Science and Technology, 2008.
    184. Wei, J. N.; Chuang, L. M.; Lin, R. S.; Chao, C. L.; Sung, F. C. Prevalence and hospitalization rates of diabetes mellitus in Taiwan, Taiwan Journal of public health 2002, 21, 173.
    185. Poernomo, T., National Taiwan University of Science and Technology, 2008.
    186. Clark, L. C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York academy of sciences 1962, 102, 29.
    187. Heineman, W. R.; Jensen, W. B. Leland C. Clark Jr. (1918–2005), Biosensors and Bioelectronics 2006, 21, 1403.
    188. Clark, L. C. Power Operated Parallel Bar Device, US patent, 1970.
    189. Zhang, Y.; Wilson, G. S. Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors, Journal of Electroanalytical Chemistry 1993, 345, 253.
    190. Clark, L. C. Membrane polarographic electrode system and method with electrochemical compensation, US patent, 1970, 3, 539, 455.
    191. Guilbault, G. G.; Lubrano, G. J. An enzyme electrode for the amperometric determination of glucose, Analytica Chimica Acta 1973, 64, 439.
    192. Chaubey, A.; Malhotra, B. D. Mediated biosensors, Biosensors and Bioelectronics 2002, 17, 441.
    193. Newman, J. D.; Turner, A. P. F. Home blood glucose biosensors: a commercial perspective, Biosensors and Bioelectronics 2005, 20, 2435.
    194. Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges, Electroanalysis 2001, 13, 983.
    195. Castillo, J.; Gaspar, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S. A.; Ryabov, A. D.; Csoregi, E. Biosensors for life quality: Design, development and applications, Sensors and Actuators B: Chemical 2004, 102, 179.
    196. Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F. D.; Ruzgas, T.; Gazaryan, I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analytica Chimica Acta 1999, 400, 91.
    197. Loeb, W. Biochem. Z. 1909, 17, 132.
    198. Wroblowa, H.; Piersma, B. J.; Bockris, J. O. M. Studies of the mechanism of the anodic oxidation of ethylene in acid and alkaline media, Journal of Electroanalytical Chemistry (1959) 1963, 6, 401.
    199. Bockris, J. O. M.; Piersma, B. J.; Gileadi, E. Anodic oxidation of cellulose and lower carbohydrates, Electrochimica Acta 1964, 9, 1329.
    200. Yao, S. J.; Appleby, A. J.; Geisel, A.; Cash, H. R.; Wolfson, S. K. Anodic Oxidation of Carbohydrates and their Derivatives in Neutral Saline Solution, Nature 1969, 224, 921.
    201. Skou, E. The electrochemical oxidation of glucose on platinum—I. The oxidation in 1 M H2SO4, Electrochimica Acta 1977, 22, 313.
    202. Ernst, S.; Heitbaum, J.; Hamann, C. H. The Electrooxidation of Glucose in Phosphate Buffer Solutions: Kinetics and Reaction Mechanism, Berichte der Bunsengesellschaft fur physikalische Chemie 1980, 84, 50.
    203. Sakamoto, M.; Takamura, K. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose, Bioelectrochemistry and Bioenergetics 1982, 9, 571.
    204. Largeaud, F.; Kokoh, K. B.; Beden, B.; Lamy, C. On the electrochemical reactivity of anomers: electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media, Journal of Electroanalytical Chemistry 1995, 397, 261.
    205. Ernst, S.; Heitbaum, J.; Hamann, C. H. The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 100, 173.
    206. Karam, P.; Halaoui, L. I. Sensing of H2O2 at Low Surface Density Assemblies of Pt Nanoparticles in Polyelectrolyte, Analytical Chemistry 2008, 80, 5441.
    207. You, T.; Niwa, O.; Tomita, M.; Hirono, S. Characterization of Platinum Nanoparticle-Embedded Carbon Film Electrode and Its Detection of Hydrogen Peroxide, Analytical Chemistry 2003, 75, 2080.
    208. Evans, S. A. G.; Elliott, J. M.; Andrews, L. M.; Bartlett, P. N.; Doyle, P. J.; Denuault, G. Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes, Analytical Chemistry 2002, 74, 1322.
    209. Lu, X.; Zhou, J.; Lu, W.; Liu, Q.; Li, J. Carbon nanofiber-based composites for the construction of mediator-free biosensors, Biosensors and Bioelectronics 2008, 23, 1236.
    210. Hanaoka, S.; Lin, J.-M.; Yamada, M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Analytica Chimica Acta 2001, 426, 57.
    211. Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Analytical Chemistry 2003, 76, 1083.
    212. Falsig, H.; Hvolbak, B.; Kristensen, I. S.; Jiang, T.; Bligaard, T.; Christensen, C. H.; Norskov, J. K. Inside Cover: Trends in the Catalytic CO Oxidation Activity of Nanoparticles, Angewandte Chemie International Edition 2008, 47, 4762.
    213. Wang, J. G.; Hammer, B. Theoretical study of H2O dissociation and CO oxidation on Pt2Mo(111), Journal of Catalysis 2006, 243, 192.
    214. Zeinalipour-Yazdi, C. D.; van Santen, R. A. Kinetic Rates and Linear Free Energy Relationships for Water Dissociation on Transition and Noble Metal Dimers, The Journal of Physical Chemistry A 2009, 113, 6971.
    215. Jinnouchi, R.; Kodama, K.; Hatanaka, T.; Morimoto, Y. First principles based mean field model for oxygen reduction reaction, Physical Chemistry Chemical Physics 2011, 13, 21070.
    216. Roques, J.; Anderson, A. B. Theory for the Potential Shift for OHads Formation on the Pt Skin on Pt3Cr(111) in Acid, Journal of The Electrochemical Society 2004, 151, E85.
    217. Woods, R., 1976. In: Bard, A.J. (Ed.) Electroanalytical Chemistry; Marcel Dekker, Inc., New York; Vol. 9.
    218. Nilsson, A.; Pettersson, L. G. M.; Hammer, B.; Bligaard, T.; Christensen, C. H.; Norskov, J. K. The electronic structure effect in heterogeneous catalysis, Catalysis Letters 2005, 100, 111.
    219. Iijima, S. Helical microtubules of graphitic carbon, Nature 1991, 354, 56.
    220. Wang, J. Editorial: Electroanalysis 1-2/2004, Electroanalysis 2004, 16, 7.
    221. Gong, K.; Yan, Y.; Zhang, M.; Su, L.; Xiong, S.; Mao, L. Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review, Analytical Sciences 2005, 21, 1383.
    222. Merkoci, A. Carbon Nanotubes in Analytical Sciences, Microchimica Acta 2006, 152, 157.
    223. Veetil, J. V.; Ye, K. Development of Immunosensors Using Carbon Nanotubes, Biotechnology Progress 2007, 23, 517.
    224. Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response, ACS Nano 2008, 2, 1825.
    225. Chen, K.-J.; Chandrasekara Pillai, K.; Rick, J.; Pan, C.-J.; Wang, S.-H.; Liu, C.-C.; Hwang, B.-J. Bimetallic PtM (M=Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2, Biosensors and Bioelectronics 2012, 33, 120.
    226. Chen, K.-J.; Lee, C.-F.; Rick, J.; Wang, S.-H.; Liu, C.-C.; Hwang, B.-J. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst, Biosensors and Bioelectronics 2012, 33, 75.
    227. Balbuena, P. B.; Calvo, S. R.; Lamas, E. J.; Salazar, P. F.; Seminario, J. M. Adsorption and Dissociation of H2O2 on Pt and Pt−Alloy Clusters and Surfaces, The Journal of Physical Chemistry B 2006, 110, 17452.
    228. Hammer, B.; Norskov, J. K. Electronic factors determining the reactivity of metal surfaces, Surface Science 1995, 343, 211.
    229. Greeley, J.; Norskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces, Annu. Rev. Phys. Chem. 2002, 53, 319.
    230. Hammer, B.; Morikawa, Y.; Norskov, J. K. CO Chemisorption at Metal Surfaces and Overlayers, Physical Review Letters 1996, 76, 2141.
    231. Hammer, B.; Norskov, J. K. In Advances in Catalysis; Bruce C. Gates, H. K., Ed.; Academic Press: 2000; Vol. Volume 45, p 71.
    232. Eichler, A.; Mittendorfer, F.; Hafner, J. Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals, Physical Review B 2000, 62, 4744.
    233. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, Angewandte Chemie International Edition 2005, 44, 2132.
    234. Zhou, W.-P.; Yang, X.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R. R. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt−Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy, Journal of the American Chemical Society 2009, 131, 12755.

    QR CODE