簡易檢索 / 詳目顯示

研究生: 林麗芳
Kartika - Wardhani
論文名稱: 開發表面修飾的螢光奈米鑽石在生物標記上的應用
Development of Surface-Modified Fluorescent Nanodiamonds (FNDs) for Biolabeling Applications
指導教授: 張煥正
Huan-Cheng Chang
江志強
Jyh-Chiang Jiang
口試委員: 韓肇中
Chau-Chung Han
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 螢光奈米鑽石細胞標記表面修飾Hela細胞
外文關鍵詞: Fluorescent Nanodiamonds, Cell Labeling, Surface Modification, HeLa cell.
相關次數: 點閱:210下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鑽石為碳的同素異形體,從其他碳材料判斷其獨特的性質為,鑽石是光學透明的且通常包含缺乏色心的點。Nitrogen vacancy的缺陷在鑽石中是最顯著的顏色。這個獨特的光學性質結合了無細胞毒性和材料的好的表面官能作用,使得奈米鑽石的螢光探針在細胞的環境中,有希望在生物標記上應用。
最後,我們利用flow cytometry (流式細胞技術)及fluorescence spectroscopy (螢光光譜法) 成功的得到沒有遮蔽的FND(螢光奈米鑽石)的細胞量,和Hela細胞上BSA共軛FNDs。清楚地,有很多東西在表面修飾過的FNDs仍可發現。我們期望表面官能化的螢光奈米鑽石在未來的幾十年,能夠符合生物及醫學上的需求。


Diamond is an allotrope of carbon. A unique property that distinguishes it from the other carbon materials is that diamond is optically transparent and often contains point defects as color centers. Nitrogen vacancy (N-V) defects are the most noteworthy color centers in diamond, because it emits far-red fluorescence with high photostability. This unique optical property combined with the non-cytotoxicity and good surface functionalizability characteristics of the material makes nanoscale diamonds a promising fluorescent probe for biolabeling applications in cellular environments.
Finally, We have successfully determined the quantity of cellular uptake of bare FNDs and BSA-conjugated FNDs in HeLa cells with both flow cytometry and fluorescence spectroscopy. As a proof of the results, we have conducted the confocal fluorescene miscroscopy for HeLa cells incubated with bare FNDs and/or BSA-coated FNDs. Clearly, there are still many things to explore with surface-modified FNDs. It is anticipated that the surface functionalized fluorescent nanodiamond will meet up with several biological and medical needs in the next few decades to come.

TABLE OF CONTENTS ABSTRACT AKNOWLEDGMENT TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER I: INTRODUCTION 1.1Research Motivation 1.2Aims of The Thesis CHAPTER 2: LITERATURE STUDY 2.1Physical and Chemical Properties of Nanodiamonds 2.1.1Classification, Structure and Preparation of Nanodiamonds 2.1.2HPHT Nanodiamonds 2.1.3Detonation Nanodiamonds 2.1.4CVD Nanodiamonds 2.1.5Colloidal Properties of Nanodiamonds 2.2Fluorescent Nanodiamonds (FNDs) 2.3Bioimaging Using Fluorescent Nanodiamonds 2.4Cellular uptake of FNDs 2.5Surface modification of Fluorescent Nanodiamonds (FNDs) 2.6Bovine Serum Albumin (BSA) CHAPTER 3. EXPERIMENTAL SECTION 3.1Chemicals and Materials 3.2Production of FNDs 3.3Preparation of BSA-coated FNDs (Surface Modification of FNDs) 3.4Cell Culture, bare FNDs and BSA-coated FNDs uptake mechanism, and cell labeling 3.5Fluorescence Spectroscopy 3.6Flow Cytometry Analysis 3.7Confocal Fluorescene Miscroscopy 3.8Quantitation of bare FNDs or BSA-coated FNDs uptaken by HeLa cells CHAPTER 4: RESULTS AND DISCUSSION 4.1Fluorescence Spectroscopy Measurement 4.1.1Quantitation of bare FNDs and BSA-coated FNDs uptaken by HeLa cells (Direct condition) 4.1.2Quantitation of bare FNDs and BSA-coated FNDs uptaken by HeLa cells (Overnight condition) 4.2Flow Cytometry Measurement 4.3Confocal Fluorescene Miscroscopy CHAPTER 5: CONCLUSION AND FUTURE WORK REFERENCES SUPPORTING INFORMATIONS

REFERENCES
[1]V. V. Danilenko, “On the history of the discovery of nanodiamond synthesis,” Phys. Solid State, vol. 46, no. 4, pp. 595–599, 2004.
[2]C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers.,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 3, pp. 727–732, 2007.
[3]S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity,” J. Am. Chem. Soc., vol. 127, no. 50, pp. 17604–17605, 2005.
[4]T.-S. Lim, C.-C. Fu, K.-C. Lee, H.-Y. Lee, K. Chen, W.-F. Cheng, W. W. Pai, H.-C. Chang, and W. Fann, “Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface.,” Phys. Chem. Chem. Phys., vol. 11, no. 10, pp. 1508–1514, 2009.
[5]A. Manuscript, I. Disorders, and A. R. Technology, “NIH Public Access,” vol. 27, no. 5, pp. 417–428, 2009.
[6]R. Kaur and I. Badea, “Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems,” Int. J. Nanomedicine, vol. 8, pp. 203–220, 2013.
[7]J.-I. Chao, E. Perevedentseva, P.-H. Chung, K.-K. Liu, C.-Y. Cheng, C.-C. Chang, and C.-L. Cheng, “Nanometer-sized diamond particle as a probe for biolabeling.,” Biophys. J., vol. 93, no. 6, pp. 2199–2208, 2007.
[8]F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J. P. Boudou, A. Krueger, and J. Wrachtrup, “Dynamics of diamond nanoparticles in solution and cells,” Nano Lett., vol. 7, no. 12, pp. 3588–3591, 2007.
[9]N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, and H. C. Chang, “In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans,” Nano Lett., vol. 10, no. 9, pp. 3692–3699, 2010.
[10]O. a. Shenderova, V. V. Zhirnov, and D. W. Brenner, “Carbon Nanostructures,” Crit. Rev. Solid State Mater. Sci., vol. 27, no. 3–4, pp. 227–356, 2002.
[11]a K. Geim, K. S. Novoselov, Geim A. K., and Novoselov K. S., “The rise of graphene.,” Nat. Mater., pp. 183–191, 2007.
[12]O. a. Williams, “Nanocrystalline diamond,” Diam. Relat. Mater., vol. 20, no. 5–6, pp. 621–640, 2011.
[13]“NANODIAMONDS : A NEW-FANGLED DRUG DELIVERY SYSTEM,” no. July 2015, 2013.
[14]E. G. Gray, “© 1955 Nature Publishing Group,” Nature, vol. 175, pp. 642–643, 1955.
[15]H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Preparation of Diamond,” Nature, vol. 184, no. 4693, pp. 1094–1098, 1959.
[16]B. Technology, “Interactions of nitrogen – vacancy centers with charged surfaces of functionalized nanodiamond particles for the detection of cellular processes,” 2012.
[17]V. Schwartz, S. H. Overbury, and C. Liang, “Carbon-mediated catalysis: Oxidative dehydrogenation on graphitic carbon,” ACS Symp. Ser., vol. 1132, pp. 247–258, 2013.
[18]Y. Zhu, J. Li, W. Li, Y. Zhang, X. Yang, N. Chen, Y. Sun, Y. Zhao, C. Fan, and Q. Huang, “The biocompatibility of nanodiamonds and their application in drug delivery systems,” Theranostics, vol. 2, no. 3, pp. 302–312, 2012.
[19]M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Krüger, and E. Osawa, “Preparation and behavior of brownish, clear nanodiamond colloids,” Adv. Mater., vol. 19, no. 9, pp. 1201–1206, 2007.
[20]V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol., vol. 7, no. 1, pp. 11–23, 2011.
[21]Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds.,” Nat. Nanotechnol., vol. 3, no. 5, pp. 284–288, 2008.
[22]P. W. May, “Diamond thin films: a 21st-century material,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 358, no. 1766, pp. 473–495, 2000.
[23]J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and ‘diamondlike’ phases.,” Science, vol. 241, no. 4868, pp. 913–921, 1988.
[24]D. Films and D. M. Gruen, “NANOCRYSTALLINE,” 1999.
[25]L. Tang, C. Tsai, W. W. Gerberich, L. Kruckeberg, and D. R. Kania, “Biocompatibility of chemical-vapour-deposited diamond,” Biomaterials, vol. 16, no. 6, pp. 483–488, 1995.
[26]A. F. Azevedo, E. J. Corat, N. G. Ferreira, and V. J. Trava-Airoldi, “Wettability and corrosion tests of diamond films grown on Ti6Al4V alloy,” Surf. Coatings Technol., vol. 194, no. 2–3, pp. 271–275, 2005.
[27]A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, E. Osawa, S. M. Hussain, and L. Dai, “Are diamond nanoparticles cytotoxic?,” J. Phys. Chem. B, vol. 111, no. 1, pp. 2–7, 2007.
[28]K. B. Holt, “Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing.,” Philos. Trans. A. Math. Phys. Eng. Sci., vol. 365, no. 1861, pp. 2845–2861, 2007.
[29]B. D. Thoms, M. S. Owens, J. E. Butler, and C. Spiro, “Production and characterization of smooth, hydrogen-terminated diamond C(100),” Appl. Phys. Lett., vol. 65, no. 23, pp. 2957–2959, 1994.
[30]C. Han, “( 19 ) United States,” vol. 1, no. 19, 2006.
[31]S. Ji, T. Jiang, K. Xu, and S. Li, “FTIR study of the adsorption of water on ultradispersed diamond powder surface,” Appl. Surf. Sci., vol. 133, no. 4, pp. 231–238, 1998.
[32]U. Fluorescent and D. Kanyuk, “ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY Kanyuk M. I.,” vol. 7751, no. 4, pp. 1–17, 2014.
[33]S. A. Dahoumane, M. N. Nguyen, A. Thorel, J. P. Boudou, M. M. Chehimi, and C. Mangeney, “Protein-functionalized hairy diamond nanoparticles,” Langmuir, vol. 25, no. 17, pp. 9633–9638, 2009.
[34]Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, and A. Krueger, “Deagglomeration and surface modification of thermally annealed nanoscale diamond,” J. Colloid Interface Sci., vol. 354, no. 1, pp. 23–30, 2011.
[35]L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, and N. Komatsu, “Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting,” Angew. Chemie - Int. Ed., vol. 50, no. 6, pp. 1388–1392, 2011.
[36]V. K. a. Sreenivasan, E. a. Ivukina, W. Deng, T. a. Kelf, T. a. Zdobnova, S. V. Lukash, B. V. Veryugin, O. a. Stremovskiy, A. V. Zvyagin, and S. M. Deyev, “Barstar:barnase — a versatile platform for colloidal diamond bioconjugation,” J. Mater. Chem., vol. 21, no. 1, p. 65, 2011.
[37]U. Maitra, a. Gomathi, and C. N. R. Rao, “Covalent and noncovalent functionalisation and solubilisation of nanodiamond,” J. Exp. Nanosci., vol. 3, no. 4, pp. 271–278, 2008.
[38]V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat Nano, vol. 7, no. 1, pp. 11–23, Jan. 2012.
[39]G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions.,” Nature, vol. 455, no. 7213, pp. 648–651, 2008.
[40]Z. Xie, “Laser-induced Multi-energy Processing in Diamond Growth,” p. 149, 2012.
[41]R. Jones and J. P. Goss, “Theory of Aggregation of Nitrogen in Diamond,” Prop. Growth Appl. Diam., p. A5.1, 2001.
[42]V. Vaijayanthimala and H.-C. Chang, “Functionalized fluorescent nanodiamonds for biomedical applications.,” Nanomedicine (London, England), vol. 4, no. 1. pp. 47–55, 2009.
[43]F. Treussart, V. Jacques, E. Wu, T. Gacoin, P. Grangier, and J. F. Roch, “Photoluminescence of single colour defects in 50 nm diamond nanocrystals,” Phys. B Condens. Matter, vol. 376–377, no. 1, pp. 926–929, 2006.
[44]I. Diamond, T. Wee, Y. Tzeng, C. Han, and H. Chang, “Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type,” pp. 9379–9386, 2007.
[45]S. C. Lawson, D. Fisher, D. C. Hunt, and M. E. Newton, “On the existence of positively charged single-substitutional nitrogen in diamond,” J. Phys. Condens. Matter, vol. 10, no. 27, p. 6171, 1998.
[46]O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou, P. a. Curmi, and F. Treussart, “Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells,” ACS Nano, vol. 3, no. 12, pp. 3955–3962, 2009.
[47]G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B, vol. 46, no. 20, pp. 13157–13170, Nov. 1992.
[48]Y. Y. Hui, Y. Chang, N. Mohan, T. Lim, Y. Chen, and H. Chang, “Polarization modulation spectroscopy of single fluorescent nanodiamonds with multiple nitrogen-vacancy centers,” no. 3, pp. 1–5, 2011.
[49]a. Gruber, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science (80-. )., vol. 276, no. 5321, pp. 2012–2014, 1997.
[50]A. T. Collins, M. F. Thomaz, and M. I. B. Jorge, “Luminescence decay time of the 1.945 eV centre in type Ib diamond,” J. Phys. C Solid State Phys., vol. 16, no. 11, p. 2177, 1983.
[51]J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J. P. Boudou, P. a. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano, vol. 3, no. 7, pp. 1959–1965, 2009.
[52]Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D. Appl. Phys., vol. 43, no. 37, p. 374021, 2010.
[53]A. Gali, M. Fyta, and E. Kaxiras, “\textit{Ab initio} supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors,” Phys. Rev. B, vol. 77, no. 15, p. 155206, Apr. 2008.
[54]M. F. Weng, S. Y. Chiang, N. S. Wang, and H. Niu, “Fluorescent nanodiamonds for specifically targeted bioimaging: Application to the interaction of transferrin with transferrin receptor,” Diam. Relat. Mater., vol. 18, no. 2–3, pp. 587–591, 2009.
[55]K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,” J. Fluoresc., vol. 4, no. 1, pp. 17–40, 1994.
[56]C. M. Brown, “Fluorescence microscopy--avoiding the pitfalls.,” J. Cell Sci., vol. 120, no. Pt 10, pp. 1703–1705, 2007.
[57]C. D. Clark and C. A. Norris, “Photoluminescence associated with the 1.673, 1.944 and 2.498 eV centres in diamond,” J. Phys. C Solid State Phys., vol. 4, no. 14, p. 2223, 1971.
[58]G. Davies, “The effect of nitrogen impurity on the annealing of radiation damage in diamond,” J. Phys. C Solid State Phys., vol. 5, no. 17, p. 2534, 1972.
[59]T. L. Wee, Y. W. Mau, C. Y. Fang, H. L. Hsu, C. C. Han, and H. C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications,” Diamond and Related Materials, vol. 18, no. 2–3. pp. 567–573, 2009.
[60]U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels.,” Nat. Methods, vol. 5, no. 9, pp. 763–775, 2008.
[61]H. Sahoo, “Fluorescent labeling techniques in biomolecules: a flashback,” RSC Adv., vol. 2, no. 18, p. 7017, 2012.
[62]C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, a S. Barnard, T. Plakhotnik, a V Zvyagin, and J. R. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds.,” Nat. Nanotechnol., vol. 5, no. 5, pp. 345–349, 2010.
[63]M. F. Weng, B. J. Chang, S. Y. Chiang, N. S. Wang, and H. Niu, “Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds,” Diam. Relat. Mater., vol. 22, pp. 96–104, 2012.
[64]K. K. Liu, C. C. Wang, C. L. Cheng, and J. I. Chao, “Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells,” Biomaterials, vol. 30, no. 26, pp. 4249–4259, 2009.
[65]H. Garcı, “Fenton-Treated Functionalized Diamond,” vol. 4, no. 1, pp. 65–74, 2010.
[66]Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu, and H. C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chemie - Int. Ed., vol. 50, no. 10, pp. 2262–2265, 2011.
[67]Z. Yu, M. Yu, Z. Zhang, G. Hong, and Q. Xiong, “Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear,” Nanoscale Res. Lett., vol. 9, no. 1, p. 343, 2014.
[68]L.-J. Su, C.-Y. Fang, Y.-T. Chang, K.-M. Chen, Y.-C. Yu, J.-H. Hsu, and H.-C. Chang, “Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds.,” Nanotechnology, vol. 24, no. 31, p. 315702, 2013.
[69]M. Brown and C. Wittwer, “Flow cytometry: Principles and clinical applications in hematology,” Clin. Chem., vol. 46, no. 8 II, pp. 1221–1229, 2000.

無法下載圖示 全文公開日期 2020/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE