簡易檢索 / 詳目顯示

研究生: 余盛智
Yu-sheng Chih
論文名稱: 用戶功率因數分析與FPGA晶片設計
Power Factor Calculation and Design of FPGA of Customers
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 辜志承
Jyh-Cherng Gu
黃培華
Huang-pei Hwa
陸臺根
Lu-tai Ken
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 電力品質FPGA
外文關鍵詞: power quality, FPGA
相關次數: 點閱:186下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來使用了許多的資訊設備與電力電子轉換器,使得電力品質的問題日趨嚴重,其中因為諧波污染、負載不平衡等負載特性均會影響用戶功率因數量測值,本文以六種功率因數定義式,針對同一筆用戶負載量測資料計算其功率因數值,計算所得之六個值將因負載特性不同而有所差異。
    隨著半導體的技術愈來愈成熟,SOC(System On a Chip)設計已是未來的趨勢,使所設計的系統晶片能達到功能強、體積小的目的,本文利用快速傅立葉轉換(FFT)為基礎來分析六種功率因數定義式,利用硬體描述語言(VHDL)及使用一些新式矽智財(IP core)如CORDIC core 和 FFT core在以由下而上的設計流程(Bottom-Up)建構整個模擬系統。最後在利用模擬與實測波形,來求取所需之實、虛與視在功率值,其平均誤差大約為0.2%左右。


    The power quality is more and more serious, because a lot of information technology equipments and power electric convertors were used in recent years. Harmonic and load unbalance can affect the measurement result of power factor of utility. This paper used six formula for power factor measurement, and they will be different according to the characteristics of load. The technology of semiconductor was more and more maturative. Design of SOC (System On a Chip) is a trend to achieve the strong and small volume in the future. This paper used Fast Fourier Transform(FFT) to analyze the six formula of power factor. The simulation system was modeled in Hardware Description Language (VHDL) and some novel IP (intellectual property) cores, such as CORDIC core and FFT core by the way of Bottom-Up. The measurement data were employed to calculate active, reactive and apparent power. The average error rate of our design is about 0.2%.

    中文摘要………………………………………………………………...I 英文摘要………………………………………………………………..II 誌謝……………………………………………………………………..III 目錄...........................................................................................................IV 圖表索引………………………………………………………………..VI 第一章 緒論 1.1研究動機與背景…………………………………………….1 1.2研究目的……………………………………………………2 1.3文獻回顧……………………………………………………3 1.4章節敘述……………………………………………………5 第二章 數位信號處理 2.1 連續時間信號之取樣………………………………………6 2.2 離散傅立葉級數……………………………………………9 2.3 離散傅立葉轉換……………………………………………10 2.4 快速傅立葉轉換……………………………………………11 2.4.1 分時FFT 演算法…………………………………...12 2.4.2 分頻FFT 演算法…………………………………...16 第三章 電力量與功率因數之定義 3.1單相系統功率因數………………………………………….20 3.2三相系統功率因數………………………………………….22 3.3平均功率因數定義………………………………………….26 3.4評估諧波污染及負載不平衡……………………………….28 3.5功率因數物理意義………………………………………….29 3.5.1諧波及不平衡對視在功率之影響…………………..29 第四章 數位積體電路與FPGA介紹 4.1數位積體電路設計簡介…………………………………….33 4.2數位積體電路的分類……………………………………….34 4.3 FPGA的簡介………………………………………………..37 4.4 FPGA的設計流程…………………………………………..37 4.5 VHDL硬體描述語言簡介………………………………….44 4.5.1 VHDL的優點.............................................................45 4.5.2 VHDL的基本架構.....................................................46 第五章 功率因數計算之晶片設計與模擬測試 5.1程式設計流程.........................................................................49 5.2 功率因數計算模組介紹........................................................49 5.2.1 FFT計算模組..............................................................51 5.2.2絕對值模組..................................................................51 5.2.3有效值模組..................................................................52 5.3 模擬波形資料結果分析........................................................53 5.3.1 諧波及不平衡對視在功率及功率因數的影響.........54 5.4 實測波形資料結果分析........................................................73 5.5 結語........................................................................................77 第六章 結論 6.1結論………………………………………………………….78 6.2未來研究方向……………………………………………….79 參考文獻…………………………………………………………….…..80 作者簡介………………………………………………………………...84

    [1]IEEE Std 1459-2000, IEEE Trial-Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, New York, 2000.
    [2]吳啟瑞,功率因數各種定義造成電費差異之研究,台電綜合研究所研究計畫,台北,2004。
    [3]GE kV2™ Multifunction Meter
    [4]IEEE Standard Dictionary of Electrical and Electronics Terms ANSI/IEEE Std 100-1988, (Fourth Edition), The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1998.
    [5]吳啟瑞、趙子志、郭鴻憲、傅祖勳,「功率因數定義對電弧爐廠電價計算之影響」,九十一年節約能源論文發表會,第212-223頁,民國91年。
    [6]P. Mattavelii, L. Fellin, P. Bordignon, and M. Perna, “Analysis of inter harmonics in dc arc furnace installations,” Conference Record of the 8th International Conference on Harmonics and Quality of Power CHOP ’98, jointly organized by IEEE/PES and NTUA, Vol. 2, pp. 1092-1099, 1998.
    [7]G. Carpinelli, M. Di Manno, P. Verde, E. Tironi, and D. Zaninelli, “AC and DC arc furnaces: a comparison on some power quality aspects,” in IEEE/PES Summer Power Meeting, Vol. 1, pp. 499-506, 1999.
    [8]L. Tang, D. Mueller, D. Hall, M. Samotyj, and J. Randolph, “Analysis of dc arc furnace operation and flicker caused by 187 Hz voltage distortion,” IEEE Trans. on Power Delivery, Vol. 9, No. 2, 1994, pp. 1098-1107.
    [9]P. S. Filipski, Y. Baghzouz, and M. D. Cox, “Discussion of power definitions contained in the IEEE dictionary,” IEEE Trans on Power Delivery, Vol. 9, No. 3, pp. 1237-1244, 1994.
    [10]IEEE Working Group on Nonsinusoidal Situations, “A survey of North American electric utility concerns regarding nonsinusoidal waveforms,” IEEE Trans. on Power Delivery, Vol. 11, No. 1, pp. 73-78, 1996.
    [11]A. E. Emanuel, “The Buchholz-Goodhue apparent power definition: The practical approach for nonsinusoidal and unbalance systems,” IEEE Trans. on Power Delivery, Vol. 13, No. 2, pp. 344-350, 1998.
    [12]A. E. Emanuel, “Apparent power definitions for three-phase systems,” IEEE Trans. on Power Delivery, Vol. 14, No. 3, pp. 767-772, 1999.
    [13]L. S. Czarnecki, “Power related phenomena in three-phase unbalanced systems,” IEEE Trans. on Power Delivery, Vol. 10, No. 3, pp. 1168-1176, 1995.
    [14]P. S. Filipski and P. W. Labaj, “Evaluation of reactive power meters in the presence of high harmonic distortion,” IEEE Trans. on Power Delivery, Vol. 7, No. 4, pp. 1793-1799, 1992.
    [15]IEEE Working Group on Nonsinusoidal Situations: Effects on Meter performance and Definitions of Power, “Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads: a discussion,” IEEE Trans. on Power Delivery, Vol. 11, No. 1, pp. 79-101, 1996.
    [16]T. H. Fu and C. J. Wu, “Load Characteristics Analysis of AC and DC Arc Furnaces Using Various Power Definitions and Statistic Method,” IEEE Trans. on Power Delivery, Vol. 17, No. 4, pp. 1099-1105, 2002.
    [17]C. J. Wu, C. P. Huang, T. H. Fu, T. C. Zhao, and H. S. Kuo, “Power Factor Definitions and Effect on Revenue of Electric Arc Furnace Load,” IEEE International Conference on Power System Technology, Vol. 1, pp. 93-97, 2002,Kunming, China.
    [18]A. E. Emanuel, “Summary of IEEE Standard 1459: Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions,” IEEE Trans. Industry Applications, Vol. 40, No. 3, pp. 869-876, 2004.
    [19]B. J. Leland, ”Signal, System and Transforms”, Pearsoned, NJ, 1996.
    [20]V. O. Alan and Ronald W. S., ”Discrete-Time Signal Process”, Prentice Hall, NJ, 1996.
    [21]C. I. Budeanu, Reactive and Fictitious Power, Romainian National Institute (1927).
    [22]IEEE Std. 100-1996, The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition (1996).
    [23]H. L. Curtis and F. B. Silsbee, “Definitions of Power and Related Quantities,” AIEE Trans., Vol. 54, pp. 394-404 (1935).
    [24]AIEE, American Standard Definitions of Electrical Terms, ASAC42-1941, pp. 35-46 (1941).
    [25]唐佩忠著,「VHDL與數位邏輯設計」,高立圖書股份有限公司,台北,民國九十三年。
    [26]鄭信源編著,「VHDL數位電路設計基礎篇與進階篇」,儒林圖書公司,台北,民國九十二年。
    [27]陳榮、陳華著,「精通VHDL晶片設計」,碁峰資訊股份有限公司,台北,民國九十二年。
    [28]杜灶生、劉紹漢著,「最新VHDL晶片設計」,全華圖書股份有限公司,台北,民國九十三年。
    [29]賈證主、薛文彬、吳志淦著,「VHDL/FPGA為處理機原理與軟核發展實務」,全華圖書股份有限公司,台北,民國95年。
    [30]林傳生著,「使用VHDL電路設計語言之數位電路設計」,儒林圖書有限公司,台北,民國90年。
    [31]黃鎮平,負載特性對功率因數計算值的影響,國立台灣科技大學電機工程系博士學位論文,2004。
    [32]陳裕仁,電壓閃爍計算及FPGA晶片設計,國立台灣科技大學電機工程系博士學位論文,2004。
    [33]林俊男,功率因數定義對大型用戶電價計費之影響,國立台灣科技大學電機工程系碩士學位論文,2002。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE