簡易檢索 / 詳目顯示

研究生: 陳福文
Fu-Wen Chen
論文名稱: 堆疊式寬除頻範圍除4及低功耗注入鎖定除2除3除頻器之設計
Design of A Wide-Locking Range Divide-By-4 Using Stack and Low Power Injection-Locked Frequency Divide-By-2/3
指導教授: 張勝良
Sheng-Lyang Jang
林士駿
Shih-Chun Lin
口試委員: 徐敬文
Ching-Wen Hsue
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 134
中文關鍵詞: 注入鎖定除頻器
外文關鍵詞: Injection-Locked Frequency Divider
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第一部分,呈現是使用一個電容性交叉耦合的注入鎖定除二除頻器,實現於台積電(TSMC)點一八製程,晶片面積為0.550 × 1.027 mm2,此架構由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一個用來注入訊號的N型金氧半電晶體並聯共振腔一個電感所組成。除二除頻器,在供應電壓為0.7伏特時,功耗為5.66毫瓦,當注入功率為0 dBm時,除頻範圍可從3.1 GHz至10.6 GHz,共7.5 GHz,百分比為109.5%。
第二部份,呈現是使用一個電容性交叉耦合的注入鎖定除三除頻器,實現於台積電(TSMC) SiGe18製程中,晶片面積為0.884 × 0.645 mm2,此架構是由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一組差動用來注入訊號的N型金氧半電晶體並聯共振腔三個電感所組成。此除三除頻器,在供應電壓為1.09伏特時,消耗功率為6.4毫瓦,當注入功率為0 dBm時,除頻範圍從5.05 GHz到10.43 GHz,共5.38 GHz,百分比為69.5%。
第三部分,呈現是使用一個電容性交叉耦合的注入鎖定除二除頻器,此架構由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一個用來注入訊號的N型金氧半電晶體並聯共振腔三個電感所組成,此架構使提升基板電壓降低臨界電壓,達成低功耗效果,實現於台積電(TSMC)點一八製程,晶片面積為0.978×0.797 mm2,此除二除頻器,在供應電壓為0.6伏特時,所消耗的功率為2.208毫瓦,當注入功率為0 dBm時,除頻範圍從3.5 GHz至7.1 GHz,百分比為67.92%。
第四部分,呈現是使用Current Reused注入鎖定除頻器,此架構使用互補式NP型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及兩個用來注入訊號的N型金氧半電晶體,此除四除頻器架構概念,是利用一組除頻器工作後,將輸出訊號拉至下一級除頻器,有效提升除頻範圍,此除頻器實現於台積電(TSMC)點一八製程,晶片面積為0.644 × 0.908 mm2,在供應電壓為1.6伏特時,所需功率消耗為9.93毫瓦,當注入功率為0 dBm時,除頻範圍可從11.4 GHz至17.1 GHz,共5.7 GHz,百分比為40%,當注入功率為1 dBm時,除頻範圍可從11.2 GHz至17.3 GHz,共6.1 GHz,百分比為42.8%。


First, this thesis presents a wide locking range divide-by-2 with capacitive cross-coupled injection-locked frequency divider (ILFD) implemented in the TSMC standard 0.18 μm CMOS process. The ILFD is based on a differential VCO with one injection MOSFET for coupling the external signal to the resonator and uses a center-tapped inductor and parasitic capacitor to form the resonator. At the supply voltage of 0.7 V, the divider’s free-running frequency is 3.32 GHz, and at the incident power of 0 dBm the locking range is about 7.5 GHz (109.5%), from the incident frequency 3.1 to 10.6 GHz. The input sensitivity plot shows over-lapped locking range characteristics. The core power consumption is 5.66 mW. The die area is 0.550 ×1.027 mm2.
Second, this thesis presents a low power and wide locking range divide-by-3 with capacitive cross-coupled injection-locked frequency divider (ILFD) implemented in the TSMC standard 0.18 μm SiGe BiCMOS process. The ILFD is based on a differential VCO with dual injection MOSFETs for coupling the external signal to the resonator. The power consumption of the ILFD core is 6.4 mW and the locking range is from 5.38 GHz (69.5%) from 5.05 to 10.43 GHz at injection power Pinj = 0 dBm. At the supply voltage of 1.09 V, the divider’s free-running frequency is 2.47 GHz. The die area is 0.884 × 0.645 mm2.
Third, this thesis presents a lower power and wide locking range divide-by-2 with capacitive cross-coupled injection-locked frequency divider (ILFD) implemented in the TSMC standard 0.18 μm CMOS process. The ILFD is based on a differential VCO with one injection MOSFET for coupling the external signal to the resonator. The ILFD uses body-biased capacitive cross-coupled oscillator for low voltage operation and low power. At the supply voltage of 0.6 V, the divider’s free-running frequency is 2.893 GHz, and at the incident power of 0 dBm the locking range is about 3.6 GHz (67.92%) from 3.5 to 7.1 GHz. The core power consumption is 2.208mW. The die area is 0.978 × 0.797 mm2.
Forth, a current-reused LC divide-by-4 injection-locked frequency divider (ILFD) is proposed and was implemented in the TSMC 0.18 μm 1P6M CMOS process. The proposed ILFD is based on a p-core cross-coupled voltage-controlled oscillator (VCO) stacked on a n-core cross-coupled VCO. Conventional harmonic mixer divide-by-4 ILFD has limited locking range, and this thesis shows a wide locking range divide-by-4 ILFD designed with linear mixer technique. At the drain-source bias of 1.6 V and at the incident power of 0 dBm, the locking range is 5.7 GHz (40%) from 11.4 to 17.1 GHz, when the incident power of 2 dBm, the locking range is 6.1 GHz (42.8%) from 11.2 to 17.3 GHz, at the power consumption of 9.93 mW. The free-running oscillation frequency is 3.8 GHz. The die area is 0.644 × 0.908 mm2

中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figure IX List of Tables XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 2 1.3 Thesis Organization 5 Chapter 2 Principles and Design Considerations of Oscillators 7 2.1 Introduction 7 2.2 Basic Theory of Oscillators 8 2.3 Feedback Oscillators 9 2.4 The Classification of Oscillators 15 2.4.1 Ring Oscillator 15 2.4.2 LC-Tank Oscillator 19 2.4.3 Parallel RLC-tank 22 2.4.4 Negative-Gm Oscillator 25 2.4.5 Cross-Coupled Oscillator 29 2.5 Inductor 31 2.6 Capacitors 37 2.7 MOSFET Varactors 39 2.7.1 The Accumulation-Mode MOS Capacitor 41 2.7.2 The Inversion-Mode MOS Capacitor 41 2.8 Design Parameters of VCO 42 2.8.1 Quality Factor 42 2.8.2 Definition of Phase Noise 45 2.8.3 Linear Time-Invariant Phase Noise Model 46 2.8.4 Linear Time-Variant Phase Noise Model 50 2.9 Classification of Noise 52 2.9.1 Thermal noise 53 2.9.2 Flicker noise 54 2.9.3 Phase Noise in Communications 55 2.9.4 Models of Phase Noise 57 2.10 Figure of Merit 57 2.11 Design Parameters of VCO 58 Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider 60 3.1 Principle of Injection Locked Frequency Divider 61 3.2 Locking Range 63 3.3 Example for A Single Injection of ILFD 66 Chapter 4 Wide Locking Range Divide-by-2 Capacitive Cross-coupled Injection-Locked Frequency Divider 68 4.1 Introduction 68 4.2 Circuit Design 69 4.3 Measurement Results and Discussion 71 4.4 Conclusion 76 Chapter 5 Low Power ÷3 Injection-Locked Frequency Divider 77 5.1 INTRODUCTION 77 5.2 Circuit design 78 5.3 EXPERIMENTAL 80 5.4 Conclusion 90 Chapter 6 Low Power Body-Biased Injection-Locked Frequency Divider 91 6.1 INTRODUCTION 91 6.2 Circuit Design 93 6.3 EXPERIMENTAL 93 6.4 Conclusion 99 Chapter 7 Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider (ILFD) Stacked Divide-by-2 ILFD 101 7.1 INTRODUCTION 101 7.2 Circuit Design 103 7.3 Measurement and Discussion 104 7.4 Conclusion 108 Reference 109

[1] B. Razavi, “RF Microelectronics 2nd edition”, Upper Saddle River, NJ: Prentice Hall, 2010
[2] S. Smith, “Microelectronic Circuit 4th edition” , Oxford University Press 1998.
[3] J. Roggers, C. Plett, “Radio frequency integrated circuit design”, Artech House, 2003
[4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators”, IEEE J. Solid-State Circuit, vol. 27, no. 5, pp.810-820, May 1992
[5] B. Razavi, “Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
[6] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[7] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall, 1997
[8] S. H. Lee, S. L. Jang, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers ”, April 2007.
[9] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications”, Kluwer Academic Publishers, 2004.
[10] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization”, IEEE J. Solid-State Circuits, vol. 35, pp.1034-1038, 2000.
[11] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency Dependence on Bias Current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002
[12] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits”, Cambridge University Press, 1998
[13] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[14] J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a Ring Structure,” ISSCC Digest of Technical Papers, pp.430-431, Feb. 2000.
[15] J. Savoj, B. Razavi, High-Speed CMOS Circuits For Optical Receivers, Kluwer Academic Publishers, 2001.
[16] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.
[17] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[18] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[19] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[20] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[21] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
[22] A. Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[23] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
[24] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[25] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
[26] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[27] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[28] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[29] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
[30] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[31] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[32] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[33] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ” Review: capacitive cross-coupled injection-locked frequency dividers,” accepted, Analog Integr Circ Sig Process. 2016 Impact Factor; 0.553
[34] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[35] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[36] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[37] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
[38] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[39] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[40] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[41] S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
[42] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2006, pp.27–29.
[43] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang,“Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol.E91-C, no.6,pp. 956–962,Jun. 2008.
[44] S.-L. Jang,C.-Y. Lin, and C.-F. Lee,“A low voltage 0.35μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
[45] S.-L. Jang, C.-C. Liu, and J.-F. Huang,”Divide-by-3 injection-locked frequency divider using two linear mixers,”IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139,Jan. 2010.
[46] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,”IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[47] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,”IEEE Microw. Wireless Compon. Lett.,vol. 20, pp.390-392, July, 2010.
[48] Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu,”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013.
[49] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[50] K.-H. Chien, J. Y. Chen and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
[51] S.-L.Jang, C.-Y. Lin and M.-H. Juang, ” Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,”Electronics Letters . vol.51, 6, 19 March 2015, p. 456 – 458.
[52] S.-L.Jang, T.-C. Kung and C.-W. Hsue," Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic," IEEE Microw. Wireless Compon. Lett., accepted, 2016.
[53] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, “Wide-locking range divide- 196 by-3 injection-locked frequency divider using 6 th-order RLC resonator,” 197 IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be published.
[54] S.-L.Jang, X.-Y. Hang, and W.–T. Liu, ” Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
[55] S.-L.Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,”Electronics Letters .,vol. 50, 23, pp.1710-1712, 2014.
[56] S.-L.Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process.,vol. 76, Issue 1, pp. 111-116,2013.
[57] S.-L.Jang, and J.-H. Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598, 2013.
[58] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
[59] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[60] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[61] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[62] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ” Review: capacitive cross-coupled injection-locked frequency dividers,” accepted, Analog Integr Circ Sig Process. 2016 Impact Factor; 0.553
[63] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[64] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[65] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[66] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
[67] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[68] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[69] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[70] S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
[71] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[72] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[73] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
[74] S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, ” Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” published online Int. J. Circuit Theory and Applications 2015.
[75] S.-L. Jang,C. C. Liu and C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
[76] S.-L.Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters ., vol. 50, 23, pp.1710-1712, 2014.
[77] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ., vol. 51, 23, pp.1888-1889 , 2015.
[78] S.-L.Jang, and C.-H. Fang, ”Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process.,86:59-63, 2016.
[79] S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014.
[80] S.-L. Jang, and W.-C. Liu, ” Injection-locked frequency divider using single-injected dual-injection MOSFETs ,” Microelectronics Journal ,46,1409-1412, 2015.
[81] S.-L. Jang, J.-F. Huang and F.-B. Lin,” wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol.25, no. 7, pp.557–562, 2015.
[82] C.-W. Chang and S.-L. Jang,” LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., vol. 101,no. 2, pp. 204-211, 2014.
[83] J. P. John, V. Ilderem, C. Park, J. Teplik, K. Kevin, and S. Cheng, “A low voltage graded-channel MOSFET (LV-GCMOS) for sub 1-volt microcontroller application,” Symposium on VLSI Technology Digest of Technical Papers 1996, pp. 178—179
[84] “Design and Characterization of RFIC Voltage Controlled Oscillators in Silicon Germanium HBT and Submicron MOS Technologies” Adam S. Klein
[85] C. P. Yue and S. S. Wong, “Physical Modeling of Spiral Inductors on Silicon,” IEEE Trans. Electron Devices, vol. 47, no. 3, pp. 560-568, Mar. 2000.
[86] Cao, Y., et al., “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE J. Solid-State Circuits, Vol. 38, No. 3, 419, 2003.
[87] Z. Wu, Y. Tian, Y. Zhu, Y. Chi, and F. Huang, “N-pi equivalent circuit for si cmos onchip inductor modeling,” in Millimeter Waves, 2008. GSMM 2008. Global Symp., pp. 279–281.

無法下載圖示 全文公開日期 2021/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE