簡易檢索 / 詳目顯示

研究生: 李孟松
Meng-Sung Li
論文名稱: 應用於 LTE 模組射頻前端電路之設計
RF Front-end Design for LTE Module Applications
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
陳漢宗
Hann-Tzong Chern
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 80
中文關鍵詞: 射頻前端模組鏈路預算分析
外文關鍵詞: LTE, OFDM, Desensitization
相關次數: 點閱:221下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出能符合低成本、小型化、整合性高,應用於 LTE 模組射頻前端電路之設計。此設計支援 LTE 的頻段為 Band 1、Band 3 以及 Band 8。LTE Band 1 在最大支援通道頻寬 20MHz、QPSK 調變以及 1RB 設置條件下,實際量測最大發射功率為 23.10dBm。LTE Band3 在最大支援通道頻寬 20MHz 通道頻寬、QPSK 調變以及 1RB 設置條件下,實際量測最大發射功率為 23.19dBm。LTE Band 8 在最大支援通道頻寬 10MHz、QPSK 調變以及 1RB 設置條件下,實際量測最大發射功率為 22.95dBm。LTE Band 1 最小支援通道頻寬 5MHz 的接收靈敏度為-105.4dBm。LTE Band 3 最小支援通道頻寬 5MHz 的接收靈敏度為-110.9dBm。LTE Band 8 最小支援通道頻寬 1.4MHz 的接收靈敏度為-112.7dBm。證明此設計符合 3GPP 規範之要求。


In this thesis, we present a module of RF front-end design with low cost, small form
factor and easy integration into LTE module applications. Based on this research, LTE
Band 1, Band 3 and Band 8 are supported.
In LTE Band 1, the measured UE maximum output power at 1.95GHz with QPSK
modulation scheme, 1 Resource Block allocation and 20MHz bandwidth is 23.10dBm.
The measured reference sensitivity level at 2.14GHz with 5MHz bandwidth is
-105.4dBm. In LTE Band 3, the measured UE maximum output power at 1747.5MHz
with QPSK modulation scheme, 1 Resource Block allocation and 20MHz bandwidth
is 23.19dBm. The measured reference sensitivity level at 1842.5MHHz with 1.4MHz
bandwidth is -110.9dBm. In LTE Band 8, the measured UE maximum output power at
897.5MHz with QPSK modulation scheme, 1 Resource Block allocation and 10MHz
bandwidth is 22.95dBm. The measured reference sensitivity level at 942.5MHz with
1.4MHz bandwidth is -112.7dBm.

目錄 圖示目錄 Abstract 誌謝 第一章 緒論 1.1. 研究背景與動機 1.2. 研究目的 1.3. 論文結構. 第二章 LTE 標準介紹 2.1. LTE 系統規格 2.2. LTE 模組介紹 2.3. 非線性特性 2.4. 雜訊 2.5. LTE 射頻測試規範 2.5.1. 發射機射頻特性 2.5.2. 接收機射頻特性 II 2.5.3. 吐吞量測試 第三章 射頻架構 3.1. 射頻元件 3.1.1. 功率放大器 3.1.2. 射頻開關模組 3.1.3. 雙工器 3.1.4. 表面聲波濾波器 3.2. 接收機架構 3.2.1. 超外差接收機 3.2.2. 直接降頻式接收機 3.3. 模組製作 3.4. 射頻前端架構 3.5. 鏈路預算分析 3.5.1. 發射鏈路預算分析 3.5.2. 接收鏈路預算分析 3.5.3. 接收靈敏度惡化分析 第四章 LTE 射頻測量 4.1. LTE 模組測量環境設置 4.2. 發射機實際量測結果 4.2.1. 最大發射功率實際量測結果 4.2.2. 誤差向量幅度實際量測結果 4.3. 接收機實際量測結果 4.3.1. 接收靈敏度實際量測結果 4.4. 吞吐量實際量測結果 第五章 結論

[1] H. Holma and A. Toskala, WCDMA FOR UMTS: HSPA Evolution and LTE, John Wiley & Sons, 2010.
[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.
[3] H. Hu, H. Gao, Z. Li and Y. Zhu, “A Sub 6GHz Massive MIMO System for 5G
New Radio,” 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1-5, June 2017
[4] O. Vermesan and P. Friess, Digitising the Industry Internet of Things Connecting the Physical, Digital and Virtual Worlds, River Publishers, 2016
[5] 3GPP, Overview of 3GPP Release 8 V0.2.3
[6] C. Gebner, Long Term Evolution: A Concise Introduction to LTE and Its
Measurement Requirements, Rohde & Schwarz, 2011
[7] 3GPP TS 136.211, V13.0.0 (2016-01), “LTE; Evolved Universal Terrestrial
Radio Access (E-UTRA); Physical channels and modulation”.
[8] B. Alberth, "Forum on Future of Wireless Band Plans: Duplex Spacing," Federal
Communication Commission, July 2012, [Online]. Available:
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/meeting71612/PANEL2.5-Albe
rth-Motorola.pdf
[9] T. D. Chiueh, P. Y. Tsai, and I. W. Lai, Baseband receiver design for wireless
MIMO-OFDM communications, John Wiley & Sons, 2012.
[10] W. Lu, M. Gu, and L.Yang, “Subcarrier Requirement Analysis for Downlink 82
OFDMA Cellular System,” 2017 Chinese Journal of Electronics, Volume: 26, Issue: 5, pp. 1086-1091, Sep. 2017.
[11] S. K. Das, Mobile Terminal Receiver Design: LTE and LTE-Advanced, John
Wiley & Sons, 2012.
[12] F. Xiong, Digital Modulation Techniques, 2nd ed, Artech house, 2006
[13] 3GPP TS 136.101 V12.9.0 (2015-10), “Evolved Universal Terrestrial Radio
Access (E-UTRA); User Equipment (UE) radio transmission and reception”.
[14] 3GPP TS 36.306 V12.3.0 (2015-2)," Evolved Universal Terrestrial Radio Access
(E-UTRA); User Equipment (UE) radio access capabilities".
[15] A. Eroglu, Introduction to RF Power Amplifier Design and Simulation, CRC Press, 2016.
[16] H. Kamizuma, T. Masuda, and M. Onishi, “Third-order Intermodulation Product
Canceller for LTE Base Station Receiver,” 2011 41st European Microwave
Conference (EuMC), pp. 230-233, Oct. 2011.
[17] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall PTR, 1998.
[18] Q. Gu, RF System Design of Transceiver for Wireless Communications, Springer
Science, 2005.
[19] E. S.Atalla, A. Bellaouar, and P. T. Balsara, “IIP2 Requirements in 4G LTE Handset Receivers,” 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1132 -1135, Dec. 2013.
[20] D. Stuetzle, IP2 and IP3 Design Considerations for a Direct Conversion I/Q Receiver, High Frequency Electronics, June 2008.
[21] Skyworks, Two-Tone vs. Single-Tone Measurement of 2nd-Order Non-linearity 83
and IP2 Performance of Direct Conversion Receivers, July 2006, [Online].
Available:
http://archive.eetasia.com/www.eetasia.com/ARTICLES/2007MAR/PDF/EEOL_
2007MAR12_ACC_AN_01.pdf
[22] J. Birchall, P. E. de Falco, K. Morris and M. Beach, “Efficiency Enhancement of M2M Communications over LTE using Adaptive Load Pull Techniques,” 2017 IEEE Radio and Wireless Symposium (RWS), pp. 26-28, Jan. 2017.
[23] L. Yu, X. Tu, J. Xie, Z. Meng, X. Zhu and Y. Gong, “Error vector magnitude
optimization with cubic metric reduction and out-of-band radiation constraints in
OFDM systems,” 2017 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), pp. 1-6, Oct. 2017
[24] F. A. Losee, RF Systems, Components, and Circuits Handbook, 2nd
ed, Artech house, 2005
[25] Skyworks, Choosing the Right RF Switches for Smart Mobile Device
Applications, May 2011, [Online]. Available:
http://www.skyworksinc.com/uploads/documents/RF_SwitchesForSmartMobile
DeviceApplications.pdf
[26] J. L. Hilbert, Tunable RF Components and Circuits: Applications in Mobile
Handsets, CRC Press, 2015
[27] B. Razavi, RF Microelectronics, 2nd ed, Pearson, Upper Saddle River, NJ: Prentice Hall PTR, 2012.
[28] S. R. Bullock, Transceiver and System Design for Digital Communications,
Scitech, 2014
[29] A. Luzzatoo and G. Shirazi, Wireless Transceiver Design: Mastering the Design of Modern Wireless Equipment and Systems, John Wiley & Sons, 2007.
[30] M. I. Montrose, Printed Circuit Board Design Techniques for EMC Compliance:
A Handbook for Designers, 2nd Ed., Wiley-IEEE Press, Jun. 2000.
[31] F. Gustrau, RF and Microwave Engineering: Fundamentals of Wireless
Communications, Wiley & Sons, 2012.
[32] S. Verma, M. Cassia and B. C. Banister, Separate I and Q Baseband Predistortion Direct Conversion Transmitters, US patent 2011/0143697, June 2011
[33] CTIA-The Wireless Association, Test Plan for Wireless Device Over-the-Air
Performance, Method of Measurement for Radiated RF Power and Receiver Performance, Revision 3.6.1, Nov. 2016
[34] A. Pipino, A. Liscidini, K.Wan, and A. Baschirotto, “Bluetooth Low Energy
Receiver System Design,” 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 465 – 468, May 2015.
[35] L. A. Bronckers, A. Roc’h and A. B. Smolders, “How Tough are the Front-End
Requirements for 4G-and-Beyond Handsets?,” 2017 47th European Microwave
Conference (EuMC), pp. 711-714, Oct. 2017.
[36] V. M.M., R. Paily, and A. Mahanta, “Gain, NF and IIP3 Budgeting of LTE
Receiver Front End,” 2013 26th International Conference on VLSI Design and
2013 12th International Conference on Embedded Systems, pp. 191 -196, Jan. 2013.
[37] A. Kiayani, L. Anttila, M. Kosunen, K. Stadius, J. Ryynänen and M. Valkama,
“Modeling and Joint Mitigation of TX and RX Nonlinearity-Induced Receiver
Desensitization,” 2017 IEEE Transactions on Microwave Theory and Techniques,
Volume: 65, Issue: 7, pp.2427 -2442, Feb. 2017.

無法下載圖示 全文公開日期 2023/01/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE