研究生: |
蕭印廷 Yin-Ting Hsiao |
---|---|
論文名稱: |
中空CeO2球體與奈米Ag顆粒之介面交互作用及其表面增強拉曼特性研究 Interface Interaction and Surface-Enhanced Raman Spectroscopy study of Hollow sphere CeO2-Ag |
指導教授: |
陳詩芸
Shih-Yun Chen |
口試委員: |
陳詩芸
Shih-Yun Chen 黃炳照 Bing-Joe Hwang Alexandre Gloter Alexandre Gloter |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 缺陷結構 、X光吸收光譜 、室溫鐵磁性 、表面增強拉曼光譜 |
外文關鍵詞: | defect, XAS, RTFM, SERS |
相關次數: | 點閱:453 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以噴霧熱裂解法合成中空二氧化鈰顆粒球,並以初濕含浸法將奈米銀顆粒沉積於二氧化鈰表面。所合成的樣品首先以X光繞射儀 (X-ray Diffraction, XRD)、穿透式電子顯微鏡 (Transmission electron microscopy, TEM)、顯微拉曼光譜儀 (Micro-Raman Spectrometer),以及X光吸收光譜(X-rays Absorption Spectroscopy,XAS) 分析其成分、形貌、結構與價態變化。由TEM觀察可以得知,噴霧裂解所製成之中空CeO2球直徑約為200奈米至2微米,殼層厚度約為30奈米。所沉積的銀均勻的分佈在球表面上,銀顆粒大小約為5至50奈米,非形成一個連續的殼層;銀顆粒的間距及覆蓋率可由前驅物濃度進行控制。X光吸收光譜與拉曼光譜的測量分析指出,當銀奈米顆粒沉積於中空CeO2球表面時,Ce3+與氧空缺含量皆增加,並且發現有電荷轉移之現象。接著以VSM (Vibrating Sample Magnetometer) 進行室溫下的磁性量測,發現所合成的中空CeO2-Ag具有室溫鐵磁特性 (Room Temperature Ferromagnetism, RTFM),且經過磁性強度與所沉積的銀數量有關。最後,拉曼光譜量測結果顯示中空CeO2-Ag複合材料能大幅提升表面增強拉曼光譜偵測 (Surface-Enhanced Raman Scattering, SERS)的靈敏度,0.002g的中空CeO2-Ag可偵測到R6G的最低濃度為10-12 M,增強因子(enhance factor)達1011。本實驗成功製備了一種具有室溫鐵磁性及良好SERS效果的多功能複合材料。
In this study, hollow CeO2-Ag composite ((H)CeO2-Ag) was prepared by two-step process. Hollow CeO2 spheres were synthesized by Spray Pyrolysis process at first, and then Ag nanoparticles were deposited on sphere surface by incipient wetness method. X-ray Diffraction (XRD), Transmission electron microscopy (TEM), X-rays Absorption Spectroscopy (XAS) and Raman were utilized to investigate the morphology, structure and valence state of cations. VSM (Vibrating Sample Magnetometer) and Raman spectrometer was utilized to measure magnetic behavior at room temperature and Surface-Enhanced Raman Scattering (SERS), respectively. Microstructural investigations demonstrated that the radius of hollow CeO2 sphere ranges from 200 nm to 2 µm with the shell thickness of sphere was about 30 nm. Silver nanoparticles which of size vary from 5 to 50 nm randomly distributed on the surface of sphere. Both of the size of silver nanoparticles and the coverage of silver nanoparticles on CeO2 sphere can be tuned by adjusting the concentration of precursor. XAS analysis predicted that defects were introduced after depositing silver nanoparticles. Moreover, charge transfer between silver and CeO2 was observed. All (H)CeO2-Ag composites were ferromagnetic at RT. Notably, the sensitivity and enhance factor of SERS was significantly improved. This study successfully synthesis a multifunction- material contain SESR effect and RTFM.
1. 郭文法, 奈米複合材料加工應用. 1997, 工業材料.
2. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
3. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
4. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1997. 78(9): p. 1667.
5. 林鼎晸, et al., 表面增強拉曼散射光譜的發展與應用.
6. Yang, D. Portable Raman Instrumentation for SERS Applications. AZO materials 2015; Available from: http://www.azom.com/article.aspx?ArticleID=12237.
7. Schmit, V.L., et al., Lab-on-a-bubble: synthesis, characterization, and evaluation of buoyant gold nanoparticle-coated silica spheres. Journal of the American Chemical Society, 2011. 134(1): p. 59-62.
8. Hu, F., et al., Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for practical quantitative detection. Scientific reports, 2014. 4.
9. Škoda, M., et al., Interaction of Au with CeO 2 (111): a photoemission study. The Journal of chemical physics, 2009. 130(3): p. 034703.
10. Ou, D.R., et al., Microstructural and metal− support interactions of the Pt− CeO2/C catalysts for direct methanol fuel cell application. Langmuir, 2011. 27(7): p. 3859-3866.
11. Chen, S.-Y., et al., Interface interactions and enhanced room temperature ferromagnetism of Ag@ CeO2 nanostructures. Nanoscale, 2017.
12. Patsalas, P., et al., Structure-dependent electronic properties of nanocrystalline cerium oxide films. Physical Review B, 2003. 68(3): p. 035104.
13. Sugiura, M., Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catalysis Surveys from Asia, 2003. 7(1): p. 77-87.
14. Liu, Y., et al., Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. Journal of Physics: Condensed Matter, 2008. 20(16): p. 165201.
15. Chen, X., et al., Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping. Nanotechnology, 2009. 20(11): p. 115606.
16. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews, 1996. 38(4): p. 439-520.
17. Nunan, J.G., et al., Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. Journal of Catalysis, 1992. 133(2): p. 309-324.
18. Oh, S.H. and C.C. Eickel, Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis, 1988. 112(2): p. 543-555.
19. Serre, C., et al., Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 catalysts for the oxidation of carbon monoxide by oxygen: I. Catalyst characterization by TPR using CO as reducing agent. Journal of Catalysis, 1993. 141(1): p. 1-8.
20. Frost, J., Junction effect interactions in methanol synthesis catalysts. Nature, 1988. 334(6183): p. 577-580.
21. Golunski, S.E., et al., Origins of low-temperature three-way activity in Pt/CeO 2. Applied Catalysis B: Environmental, 1995. 5(4): p. 367-376.
22. Kašpar, J., P. Fornasiero, and M. Graziani, Use of CeO 2-based oxides in the three-way catalysis. Catalysis Today, 1999. 50(2): p. 285-298.
23. Li, R., et al., Synthesis and UV-shielding properties of ZnO-and CaO-doped CeO 2 via soft solution chemical process. Solid State Ionics, 2002. 151(1): p. 235-241.
24. Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for water decomposition to O 2 in the presence of Ce aq 4+ and Fe aq 3+ species. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
25. Bamwenda, G.R., et al., The photocatalytic oxidation of water to O 2 over pure CeO 2, WO 3, and TiO 2 using Fe 3+ and Ce 4+ as electron acceptors. Applied Catalysis A: General, 2001. 205(1): p. 117-128.
26. Izu, N., et al., Resistive oxygen gas sensors based on CeO 2 fine powder prepared using mist pyrolysis. Sensors and Actuators B: Chemical, 2002. 87(1): p. 95-98.
27. Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical, 2003. 93(1): p. 449-453.
28. Trinchi, A., et al., Investigation of sol–gel prepared CeO 2–TiO 2 thin films for oxygen gas sensing. Sensors and Actuators B: Chemical, 2003. 95(1): p. 145-150.
29. Atanasov, P., et al., (1 10) Nd: KGW waveguide films grown on CeO 2/Si substrates by pulsed laser deposition. Thin Solid Films, 2004. 453: p. 150-153.
30. Shirakawa, M., et al., Fabrication and characterization of a CeO 2 buffer layer on c-plane and tilt-c-plane sapphire substrates. Physica C: Superconductivity, 2003. 392: p. 1346-1352.
31. Sammes, N. and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics, 1997. 100(1-2): p. 39-44.
32. Gauckler, L.J., M. Go¨ dickemeier, and D. Schneider, Nonstoichiometry and defect chemistry of ceria solid solutions. Journal of Electroceramics, 1997. 1(2): p. 165-172.
33. 吳育璿, 一種製備核殼及中空銀顆粒的方法. 2014.
34. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
35. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of materials research, 1995. 10(07): p. 1661-1673.
36. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 1999. 59(3): p. 185-198.
37. Naşcu, C., et al., Spray pyrolysis deposition of CuS thin films. Materials letters, 1997. 32(2-3): p. 73-77.
38. 周更生, et al., 奈米銀. 科學發展, 2006. 408: p. 32-33.
39. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 2004. 275(1): p. 177-182.
40. Alt, V., et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004. 25(18): p. 4383-4391.
41. Doering, W.E. and S. Nie, Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B, 2002. 106(2): p. 311-317.
42. Felidj, N., et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003. 82(18): p. 3095-3097.
43. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
44. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
45. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
46. Le Ru, E., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
47. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
48. Haes, A.J. and R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 2004. 379(7-8): p. 920-930.
49. Xu, H., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters, 1999. 83(21): p. 4357.
50. Camden, J.P., et al., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
51. Kumar, C.S., Raman spectroscopy for nanomaterials characterization. 2012: Springer Science & Business Media.
52. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics, 2004. 120(1): p. 357-366.
53. 鄭信民, et al., X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 2002: p. 100-108.
54. Patterson, A., The Scherrer formula for X-ray particle size determination. Physical review, 1939. 56(10): p. 978.
55. Sayers, D.E., E.A. Stern, and F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure. Physical Review Letters, 1971. 27(18): p. 1204.
56. Koningsberger, D. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988.
57. Garvie, L. and P. Buseck, Determination of Ce 4+/Ce 3+ in electron-beam-damaged CeO 2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of solids, 1999. 60(12): p. 1943-1947.
58. Fulton, C., et al., A study of conduction band edge states in complex oxides by X-ray absorption spectroscopy. Radiation Physics and Chemistry, 2006. 75(11): p. 1934-1938.
59. Ou, D.R., et al., Oxygen vacancy ordering in heavily rare-earth-doped ceria. Applied physics letters, 2006. 89(17): p. 171911.
60. Bzowski, A., T. Sham, and Y. Yiu, Ag L-edge x-ray-absorption near-edge-structure study of charge redistribution at the Ag site in Au-Ag alloys. Physical Review B, 1994. 49(19): p. 13776.
61. Drube, W., et al., Sublifetime-resolution Ag L 3-edge XANES studies of Ag-Au alloys. Physical Review B, 1998. 58(11): p. 6871.
62. Nachimuthu, P., et al., The study of nanocrystalline cerium oxide by X-ray absorption spectroscopy. Journal of Solid State Chemistry, 2000. 149(2): p. 408-413.
63. Popović, Z., et al., Raman scattering on nanomaterials and nanostructures. Annalen der Physik, 2011. 523(1‐2): p. 62-74.
64. McBride, J., et al., Raman and x‐ray studies of Ce1− x RE x O2− y, where RE= La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994. 76(4): p. 2435-2441.
65. Nakajima, A., A. Yoshihara, and M. Ishigame, Defect-induced Raman spectra in doped CeO 2. Physical Review B, 1994. 50(18): p. 13297.
66. Taniguchi, T., et al., Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. The Journal of Physical Chemistry C, 2009. 113(46): p. 19789-19793.
67. Choudhury, B. and A. Choudhury, Lattice distortion and corresponding changes in optical properties of CeO 2 nanoparticles on Nd doping. Current Applied Physics, 2013. 13(1): p. 217-223.
68. Mu, C., J.-P. Zhang, and D. Xu, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology, 2009. 21(1): p. 015604.