簡易檢索 / 詳目顯示

研究生: 劉文亮
Jeffrey Susanto
論文名稱: 疏水殼聚醣塗層之三聚氰胺泡綿於多功能水處理之應用
Hydrophobically Modified Chitosan (HMCS) Coated Melamine Sponge for Multifunctional Water Treatment Applications
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王勝仕
Steven S.-S. Wang
武德勝
Duc-Thang Vo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 64
中文關鍵詞: 殼聚醣疏水性殼聚醣α-環糊精冷凍乾燥三聚氰胺海綿油/水乳液分離重力驅動水過濾
外文關鍵詞: α-cyclodextrin, air-dry, freeze-dry, melamine sponge, oil/water emulsion separation, gravity-driven filtration, multifunction
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

殼聚醣是一陽離子生物聚合物,是通過幾丁質脫乙酰化所製備而得的。其結構中之氨基可以接上烷基鏈而成為具有廣泛應用性的疏水殼聚醣(HMCS)。疏水性烷基鏈可以與革蘭氏陰性菌的細胞壁膜、有機化合物或油相之疏水作用,使得HMCS 海綿可以很容易地去除細菌、染料或油脂。然而,其機械強度較弱可能會導致其應用受到限制。因此使用支HMCS物做為 HMCS 的基材可克服上述限制。三聚氰胺海綿 (MS)無毒性且成本便宜可以當HMCS其機械支撐物。 本論文採用HMCS 溶液及泡沫兩種形式將其塗層 於三聚氰胺海綿 (MS)中 (MS@HMCS),探討風乾及冷凍乾燥HMCS塗層對其在處理水過濾上的應用效果。
所製備的 MS@HMCS 表現出不同的形態和特性。由於疏水烷基鏈與大腸桿菌細胞壁膜之間的疏水相互作用,可以錨定細胞並破壞細胞壁膜,將死亡之細胞釋放到溶液中,從而使疏水烷基鏈活性表面不斷再生可持續捕獲和破壞剩餘的活細胞。因此,MS@HMCS 可做為去除革蘭氏陰性菌的有效過濾器:在光密度分別為 1.0及0.2時,細菌去除能力分別可達60%及96.5%。此外,MS@HMCS 還表現出顯著的甲基橙MO 去除能力,能將 25 ppm MO 溶液完全過濾去除。同樣,MS@HMCS 也能非常有效地去除出水中之油乳液。在引入α-環糊精(α-CD)來阻斷MS@HMCS中之疏水烷基鏈,則完全喪失其對大腸桿菌 甲基橙及水中油乳液的去除效果。結果表明,MS@HMCS 具有顯著地重力驅動水過濾應用的潛力。


Chitosan, a well-known cationic biopolymer, is produced through the deacetylation of chitin. The amino groups can be altered with alkyl chains to obtain the hydrophobically modified chitosan (HMCS) with a wide variety of applications. The hydrophobic alkyl chains can interact with the cell wall membrane of gram-negative bacteria, organic compounds, or the oil phase to enhance the properties of native chitosan. Due to the hydrophobic interaction, the HMCS sponges can be easily prepared for bacterial, dye, or oil removal. However, the small pores and weak mechanical strength may inhibit its applications. Therefore, a supporter can be used as a matrix for HMCS to overcome the above limitation. A melamine sponge (MS) was utilized as a mechanical supporter that is non-toxic and cost-effective. The HMCS-coated MS (MS@HMCS) was produced by using two distinct HMCS phases (solution or foam) in MS, followed by two particular drying methods (air-dry or freeze-dry).
Due to its coating processes, the as-prepared MS@HMCS exhibited different morphologies and properties. The materials were characterized by measuring the contact angle, SEM, fluorescence microscope, and stress strength test. The batch absorption and filtration were conducted based on the interactions between the hydrophobic tails and the cell wall membrane of E. coli, or methyl orange (MO) dye. The hydrophobic tails can anchor and disrupt the cell wall membranes to release the dead cells into the bulk solution, allowing the active surface to regenerate for capturing and destroying the remaining living cells. Therefore, the MS@HMCS can serve as an effective filter in removing gram-negative bacteria: 60 % at high concentration (optical density of 1.0) and 96.5 % at low concentration (optical density of 0.2). In addition, the MS@HMCS exhibited a notable elimination of MO with 100 % removal capability in 25 ppm MO solution. Similarly, the MS@HMCS is a potential filter for oil/water separation or emulsion filtration as it demonstrated complete separation. The alpha-cyclodextrin (α-CD) was introduced to block the hydrophobic tails, and the effect of the MS@HMCS/α-CD was also studied. The results indicate that MS@HMCS has the potential to be an excellent multifunctional water filtration application.

摘要 ABSTRACT ACKNOWLEDGEMENT ABBREVIATIONS TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1.1. Background 1.2. Objectives CHAPTER 2 LITERATURE REVIEW 2.1. Melamine Sponge 2.2. Chitosan 2.3. Hydrophobically Modified Chitosan 2.4. Antibacterial material 2.5. Dye adsorption 2.6. Oil/Water Separation CHAPTER 3 MATERIALS AND METHOD 3.1. Materials 3.1.1. Bacteria 3.1.2. Chemical 3.2. LB medium: used for E. coli cultivation and antibacterial test 3.3. Reagent 3.3.1. Ninhydrin reagent 3.3.2. Phosphate buffer saline 1X (0.01 M PBS, pH 7.4) 3.4. Apparatus 3.5. Characterization 3.5.1. Ninhydrin assay for determination of sodium cyanoborohydride 3.5.2. A Field Emission Scanning Electron Microscope (FE-SEM) 3.5.3. Water Contact Angle (WCA) 3.5.4. Thermogravimetric analysis (TGA) 3.5.5. The hydrophobicity of the HMCS-coated melamine sponge 3.5.6. A stress strength test 3.6. Method 3.6.1. Preparation of Hydrophobically Modified Chitosan Powder 3.6.2. Preparation of HMCS Solution 3.6.3. Preparation of HMCS Foam 3.6.4. Preparation of HMCS Coated Melamine Sponge with Air-dry Method 3.6.5. Preparation of HMCS Coated Melamine Sponge with Freeze-dry Method 3.6.6. Preparation of MS@HMCS/α-CD 3.6.7. Dye Adsorption 3.6.7.1 Batch Adsorption 3.6.7.2 Gravity-driven filtration 3.6.8. Selective Oil Absorption 3.6.9. Oil/Water Emulsion Separation 3.6.9.1 Preparation of Oil/Water Emulsion 3.6.9.2 Oil/Water Emulsion Gravity-driven Filtration 3.6.10. Bacteria removal study 3.6.10.1 Batch Removal of E. coli suspension 3.6.10.2 Gravity-driven Filtration 3.6.10.3 The Contact-killing Property of MS@HMCS CHAPTER 4 RESULTS AND DISCUSSION 4.1. Characterization of HMCS solution and HMCS foam 4.1.1. The viscosity of HMCS solution and foam 4.1.2. Bubble Size in HMCS foam 4.2. Characterization of Hydrophobically Modified Chitosan Coated Melamine Sponge (MS@HMCS) 4.2.1. Fluorescence microscopy images of curcumin staining of the MS@HMCS 4.2.2. The mass percentage of HMCS in MS sponges 4.2.3. The flow rate of phosphate buffer saline (PBS) passes through the MS@HMCS 4.2.4. The morphology of HMCS in MS 4.2.5. The mechanical strength of MS@HMCS 4.3. MS@HMCS for bacteria removal 4.4. MS@HMCS for Methyl Orange Adsorption 4.5. Selective Oil Absorption and Oil/Water Emulsion Separation CHAPTER 5 CONCLUSION AND FUTURE WORK 5.1. Conclusion 5.2. Future work REFERENCES

Al-Mahbashi, N. M. Y., Kutty, S. R. M., Bilad, M. R., Huda, N., Kobun, R., Noor, A., . . . Al-dhawi, B. N. S. (2022). Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar. Sustainability, 14(11). Retrieved from <Go to ISI>://WOS:000808609800001
Ashbolt, N. J. (2004). Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology, 198(1-3), 229-238. Retrieved from <Go to ISI>://WOS:000221622000025
Bensalah, J., Berradi, M., Habsaoui, A., Dagdag, O., El Amri, A., El Khattabi, O., . . . Rifi, E. (2021). Adsorption of the Orange Methyl Dye and Lead (II) by the Cationic Resin Amberlite (R) IRC-50: Kinetic Study and Modeling of Experimental Data. Journal of the Chemical Society of Pakistan, 43(5), 535-545. Retrieved from <Go to ISI>://WOS:000709875000005
Cabral, J. P. (2010). Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health, 7(10), 3657-3703. doi:10.3390/ijerph7103657
Chen, G., Cao, Y., Ke, L., Ye, X., Huang, X., & Shi, B. (2018). Plant Polyphenols as Multifunctional Platforms To Fabricate Three-Dimensional Superhydrophobic Foams for Oil/Water and Emulsion Separation. Industrial & Engineering Chemistry Research, 57(48), 16442-16450. doi:10.1021/acs.iecr.8b03953
Cheung, R. C., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar Drugs, 13(8), 5156-5186. doi:10.3390/md13085156
Dowling, M. B., Kumar, R., Keibler, M. A., Hess, J. R., Bochicchio, G. V., & Raghavan, S. R. (2011). A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 32(13), 3351-3357. doi:10.1016/j.biomaterials.2010.12.033
Drochioiu, G., Mangalagiu, L., Avram, E., Popa, K., Dirtu, A. C., & Druta, I. (2004). Cyanide reaction with ninhydrin: Elucidation of reaction and interference mechanisms. Analytical Sciences, 20(10), 1443-1447. Retrieved from <Go to ISI>://WOS:000224499900015
Du, X., Liu, Y., Wang, X., Yan, H., Wang, L., Qu, L., . . . Wang, L. (2019). Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. Mater Sci Eng C Mater Biol Appl, 104, 109930. doi:10.1016/j.msec.2019.109930
Han, S., Song, Q., Feng, X., Wang, J., Zhang, X., & Zhang, Y. (2021). Flame-Retardant Silanized Boron Nitride Nanosheet-Infused Superhydrophobic Sponges for Oil/Water Separation. ACS Applied Nano Materials, 4(11), 11809-11819. doi:10.1021/acsanm.1c02396
Haque, E., Jun, J. W., & Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 185(1), 507-511. doi:10.1016/j.jhazmat.2010.09.035
Hu, Y. Q., Guo, T., Ye, X. S., Li, Q., Guo, M., Liu, H. N., & Wu, Z. J. (2013). Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chemical Engineering Journal, 228, 392-397. Retrieved from <Go to ISI>://WOS:000326203500043
Huang, S., Li, X., Jiao, Y., & Shi, J. (2015). Fabrication of a Superhydrophobic, Fire-Resistant, and Mechanical Robust Sponge upon Polyphenol Chemistry for Efficiently Absorbing Oils/Organic Solvents. Industrial & Engineering Chemistry Research, 54(6), 1842-1848. doi:10.1021/ie504812p
Ikeda, T., Ikeda, K., Yamamoto, K., Ishizaki, H., Yoshizawa, Y., Yanagiguchi, K., . . . Hayashi, Y. (2014). Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res Int, 2014, 786892. doi:10.1155/2014/786892
Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4. doi:10.1016/j.crgsc.2021.100179
Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J., & Yang, J. (2018). Cross-linked chitosan/beta-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr Polym, 182, 106-114. doi:10.1016/j.carbpol.2017.10.097
Jin, L., Gao, Y., Huang, Y., Ou, M., Liu, Z., Zhang, X., . . . Zhao, C. (2022). Mussel-Inspired and In Situ Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS Appl Mater Interfaces, 14(2), 2663-2673. doi:10.1021/acsami.1c16230
Jin, Y. J., Liu, F., Shan, C., Tong, M. P., & Hou, Y. L. (2014). Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Research, 50, 124-134. Retrieved from <Go to ISI>://WOS:000330909600013
Kong, M., Chen, X. G., Liu, C. S., Liu, C. G., Meng, X. H., & Yu le, J. (2008). Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B Biointerfaces, 65(2), 197-202. doi:10.1016/j.colsurfb.2008.04.003
Mittal, A., Malviya, A., Kaur, D., Mittal, J., & Kurup, L. (2007). Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 148(1-2), 229-240. Retrieved from <Go to ISI>://WOS:000249312500031
Nagaraja, P., Kumar, M. S. H., Yathirajan, H. S., & Prakash, J. S. (2002). Novel sensitive spectrophotometric method for the trace determination of cyanide in industrial effluent. Analytical Sciences, 18(9), 1027-1030. Retrieved from <Go to ISI>://WOS:000178041000011
Nava-Ortiz, C. A., Burillo, G., Concheiro, A., Bucio, E., Matthijs, N., Nelis, H., . . . Alvarez-Lorenzo, C. (2010). Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomater, 6(4), 1398-1404. doi:10.1016/j.actbio.2009.10.039
Niu, H., Qiang, Z., & Ren, J. (2021). Durable, magnetic-responsive melamine sponge composite for high efficiency,in situoil-water separation. Nanotechnology, 32(27). doi:10.1088/1361-6528/abef2e
Ray, A. B., Selvakumar, A., & Tafuri, A. N. (2006). Removal of selected pollutants from aqueous media by hardwood mulch. Journal of Hazardous Materials, 136(2), 213-218. Retrieved from <Go to ISI>://WOS:000239230900009
Ruocco, N., Frielinghaus, H., Vitiello, G., D'Errico, G., Leal, L. G., Richter, D., . . . Paduano, L. (2015). How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates. J Colloid Interface Sci, 452, 160-168. doi:10.1016/j.jcis.2015.03.058
Sakhadeo, N. N., & Patro, T. U. (2022). Exploring the Multifunctional Applications of Surface-Coated Polymeric Foams─A Review. Industrial & Engineering Chemistry Research, 61(16), 5366-5387. doi:10.1021/acs.iecr.1c04945
Sayah, R. S., Kaneene, J. B., Johnson, Y., & Miller, R. (2005). Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Applied and Environmental Microbiology, 71(3), 1394-1404. Retrieved from <Go to ISI>://WOS:000227702900035
Singh, A., & Dubey, A. K. (2018). Various Biomaterials and Techniques for Improving Antibacterial Response. ACS Applied Bio Materials, 1(1), 3-20. doi:10.1021/acsabm.8b00033
Takeshita, S., Konishi, A., Takebayashi, Y., Yoda, S., & Otake, K. (2017). Aldehyde Approach to Hydrophobic Modification of Chitosan Aerogels. Biomacromolecules, 18(7), 2172-2178. doi:10.1021/acs.biomac.7b00562
Usman, M., Ahmed, A., Yu, B., Wang, S., Shen, Y., & Cong, H. (2021). Simultaneous adsorption of heavy metals and organic dyes by beta-Cyclodextrin-Chitosan based cross-linked adsorbent. Carbohydr Polym, 255, 117486. doi:10.1016/j.carbpol.2020.117486
Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., . . . Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115-130. Retrieved from <Go to ISI>://WOS:000343613000016
Vo, D.-T., & Lee, C.-K. (2017). Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal. Journal of Environmental Chemical Engineering, 5(6), 5688-5694. doi:10.1016/j.jece.2017.10.042
Vo, D.-T., Whiteley, C. G., & Lee, C.-K. (2015). Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Industrial & Engineering Chemistry Research, 54(38), 9270-9277. doi:10.1021/acs.iecr.5b01335
Vo, D. T., & Lee, C. K. (2017). Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydr Polym, 164, 109-117. doi:10.1016/j.carbpol.2017.01.093
Vo, D. T., & Lee, C. K. (2018). Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydr Polym, 187, 1-7. doi:10.1016/j.carbpol.2018.01.082
Wang, C. F., Huang, H. C., & Chen, L. T. (2015). Protonated Melamine Sponge for Effective Oil/Water Separation. Sci Rep, 5, 14294. doi:10.1038/srep14294
Wang, J., Wang, H., & Geng, G. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar Pollut Bull, 127, 108-116. doi:10.1016/j.marpolbul.2017.11.060
Wang, K., He, H., Wei, B., Zhang, T. C., Chang, H., Li, Y., . . . Yuan, S. (2021). Multifunctional Switchable Nanocoated Membranes for Efficient Integrated Purification of Oil/Water Emulsions. ACS Appl Mater Interfaces, 13(45), 54315-54323. doi:10.1021/acsami.1c15024
Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci, 21(2). doi:10.3390/ijms21020487
Xu, Z., Miyazaki, K., & Hori, T. (2015). Dopamine-Induced Superhydrophobic Melamine Foam for Oil/Water Separation. Advanced Materials Interfaces, 2(15). doi:10.1002/admi.201500255
Yang, Y., Yi, H., & Wang, C. (2015). Oil Absorbents Based on Melamine/Lignin by a Dip Adsorbing Method. ACS Sustainable Chemistry & Engineering, 3(12), 3012-3018. doi:10.1021/acssuschemeng.5b01187
Yilmaz Atay, H. (2019). Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan (pp. 457-489).
Yin, M., Li, X., Liu, Y., & Ren, X. (2021). Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohydr Polym, 266, 118129. doi:10.1016/j.carbpol.2021.118129
Yin, M., Wan, S., Ren, X., & Chu, C. C. (2021). Development of Inherently Antibacterial, Biodegradable, and Biologically Active Chitosan/Pseudo-Protein Hybrid Hydrogels as Biofunctional Wound Dressings. ACS Appl Mater Interfaces, 13(12), 14688-14699. doi:10.1021/acsami.0c21680
Zeng, X., Cai, W., Fu, S., Lin, X., Lu, Q., Liao, S., . . . Tan, S. (2022). A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants. J Hazard Mater, 424(Pt B), 127543. doi:10.1016/j.jhazmat.2021.127543
Zhang, L., Zhou, A. G., Sun, B. R., Chen, K. S., & Yu, H. Z. (2021). Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nat Commun, 12(1), 982. doi:10.1038/s41467-021-21219-y
Zhu, H. Y., Jiang, R., Xiao, L., & Li, W. (2010). A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. Journal of Hazardous Materials, 179(1-3), 251-257. Retrieved from <Go to ISI>://WOS:000278626700036

無法下載圖示 全文公開日期 2027/08/24 (校內網路)
全文公開日期 2027/08/24 (校外網路)
全文公開日期 2027/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE