簡易檢索 / 詳目顯示

研究生: Iman Adipurnama
Iman Adipurnama
論文名稱: 明膠對聚胺基甲酸酯之表面改質在人工血管之應用
Surface modification of polyurethane with gelatin for vascular graft applications
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 鄭劍廷
Chiang-Ting Chien
鄭詠馨
Yung-Hsin Cheng
劉定宇
Ting-Yu Liu
高震宇
Chen-Yu Kao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 97
中文關鍵詞: 聚胺基甲酸酯人工血管表面改質血液相容性臭氧處理明膠
外文關鍵詞: Polyurethane, Artificial Vascular Grafts, Surface Modification, Hemocompatibility, Ozone Treatment, Gelatin
相關次數: 點閱:455下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於病損血管的替換,由於自體血管的供應有限,開發合成人工血管的研究大幅增加。合成高分子之人工血管的缺陷為血管再狹窄及血栓形成。另一方面,天然高分子一般具生物相容性及生物可降解,可以彌補合成高分子的不足。明膠,由於可促進細胞貼附而無血小板聚集,在改善人工血管表面具有發展潛力。將天然高分子結合在合成高分子表面,可解決上述問題。
本論文旨在以聚胺基甲酸酯(polyurethane, PU)製作小口徑人工血管。首先以臭氧活化PU表面,再行接枝聚合丙烯酸(acrylic acid, AA),進而將明膠(gelatin)鍵結於PU-AA表面。如此得以改善PU的表面性質、力學性質、血液相容性。
實驗結果顯示以臭氧處理30 min,PU可達最高的過氧化物及PAA的表面密度。同時,AA接枝聚合的最佳條件為30°C、60 min、AA濃度30 wt%。接觸角測試結果顯示,經表面改質的PU具有親水性。此現象符合XPS與FTIR之測試結果。
力學測試結果顯示所有改質的PU血管之爆破壓值均落在血管的一般範圍內。根據全血測試結果,與接枝明膠PU血管接觸的血液,其血小板、紅血球、白血球的濃度變化不明顯,顯示接枝明膠可有效減少血栓的形成。細胞測試結果,在接枝明膠PU血管表面的細胞增生,顯示其具有細胞相容性。
根據上述實驗結果,顯示接枝明膠的PU人工血管可抗血栓形成,故此一方法值得未來繼續研發人工血管。


The means for developing synthetic vascular grafts to replace blood vessels is increasing extensively because of the limited supply of autologous vessels. Synthetic polymers as the alternatives still suffer from restenosis and thrombus formation. Natural polymers, on the other hand, are commonly biocompatible and biodegradable, compliment with the synthetic polymers. Gelatin is one of the promising candidate to help improving synthetic vascular grafts surface owing to its ability to promote cell adhesion without promoting platelet aggregation at the surface. Synthetic polymers together with natural polymers can be combined to develop a bio-active surface modified synthetic polymers to solve the aforementioned problems.
This study is aiming to develop small caliber vascular grafts made of polyurethane (PU). PU was firstly exposed with ozone to induce free radicals on the surface, followed by graft-polymerization of acrylic acid (AA) before immobilizing gelatin. The gelatin-immobilizing PU exhibited improved surface properties, mechanical properties, cytocompatibility and hemocompatibility.
The results showed that the highest surface density of peroxides generated and PAA-grafted was reached at 30 min of ozone treatment. It was found also the optimized parameters to graft acrylic acid was 30°C, 60 min and 30% AA concentration. In addition, water contact angle measurement showed that PU became more hydrophilic after treating with ozone, grafting PAA and immobilizing gelatin. This result was in agreement with other the results from XPS and FTIR.
The burst mechanical pressure confirms that all samples are acceptable as its value is in the normal range. The whole blood test indicated that gelatin immobilization could decrease the thrombus formation. The platelet, red blood cells and white blood cells numbers varied insignificantly after incubating with gelatin-immobilized PU. MTT results also indicated cytocompatibility according to the cell growth and proliferation.
Overall result demonstrated that non-thrombogenic PU vascular grafts can be achieved by immobilizing with gelatin. This simple strategy is worthy to be further studied in the future.

中文摘要 I Abstract II Acknowledgement IV Table of Contents V List of Tables IX List of Figures X 1. Introduction 1 2. Background and Theory 5 2.1 Vascular Tissue Engineering 5 2.2 Blood-Material Interaction 7 2.3 Polyurethanes 10 2.4 Surface Modification 12 2.4.1 Polyurethane Surface Modification 14 2.4.2 PEG and its derivatives 15 2.4.3 Zwitterionic polymer 16 2.4.4 Bioactive surface modification 17 2.5 Natural Polymers 18 2.6 Gelatin 20 2.6.1 Gelatin composition and structure 21 2.6.2 Nature of gelatin interactions 22 2.7 Method to incorporate gelatin as hybrid construct elements 23 2.7.1 Nano-fibrous materials (electrospinning) 23 2.7.2 Surface modification 25 2.7.3 Other methods 26 2.8 Surface Endothelialization 27 2.8.1 In vitro endothelialization 28 2.8.2 In vivo endothelialization 29 3. Experimental Method 30 3.1 A Flow sheet of this work 30 3.1.1 Gelatin Modified Polyurethane 30 3.1.2 Material Characterization, Cytocompatibility and Haemocompatibility 30 3.2 Chemical schemes of reaction sequence 31 3.2.1 Ozone activation on PU inner surface 31 3.2.2 Acrylic Acid graft polymerization on PU 32 3.2.3 Immobilization of gelatin on acrylic acid grafted PU 32 3.3 Experiment materials 32 3.4 Experiment Apparatus 33 3.5 Experimental Procedures 33 3.5.1 Polyurethane 33 3.5.2 Ozone Treatment 34 3.5.3 Poly(Acrylic Acid) (PAA) Graft Copolymerization 34 3.5.4 Gelatin Immobilization 35 3.6 Surface Characterization 35 3.6.1 Scanning Electron Microscope (SEM) 35 3.6.2 Functional Groups Determination 35 3.6.3 Contact Angle Measurement 36 3.6.4 Fourier-Transform Infrared (FTIR) 36 3.6.5 X-Ray Photoelectron Spectroscopy 36 3.7 Mechanical Properties 36 3.7.1 Elastic modulus measurements 36 3.7.2 Burst pressure measurements 37 3.8 Hemocompatibility 38 3.8.1 Protein adsorption 38 3.8.2 Blood coagulation test 38 3.8.3 Whole blood test 38 3.9 Cytocompatibility and cell proliferation 39 4. Result and Discussion 40 4.1 Modification Mechanism 40 4.2 Surface Morphology 42 4.3 Mechanical Properties (elastic modulus and burst pressure value) 44 4.4 Functional groups confirmation 47 4.4.1 Peroxide group 47 4.4.2 Carboxylic groups 48 4.4.3 Gelatin presence confirmation 53 4.5 Surface wettability 55 4.6 FTIR-ATR analysis 56 4.7 XPS survey spectra 57 4.8 Hemocompatibility 58 4.8.1 Blood coagulation test 58 4.8.2 Protein adsorption 59 4.8.3 Whole blood test 61 4.9 Cell morphology, cytotoxicity and proliferation 63 5. Conclusion 66 6. Future Work 67 7. References 68

[1] A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, M.J. Blaha, S. Dai, E.S. Ford, C.S. Fox, S. Franco, H.J. Fullerton, C. Gillespie, S.M. Hailpern, J.A. Heit, V.J. Howard, M.D. Huffman, S.E. Judd, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, R.H. Mackey, D.J. Magid, G.M. Marcus, A. Marelli, D.B. Matchar, D.K. McGuire, E.R. Mohler, C.S. Moy, M.E. Mussolino, R.W. Neumar, G. Nichol, D.K. Pandey, N.P. Paynter, M.J. Reeves, P.D. Sorlie, J. Stein, A. Towfighi, T.N. Turan, S.S. Virani, N.D. Wong, D. Woo, M.B. Turner, Heart Disease and Stroke Statistics - 2014 Update: A report from the American Heart Association, 2014. doi:10.1161/01.cir.0000441139.02102.80.
[2] K. Zhang, T. Liu, J.A. Li, J.Y. Chen, J. Wang, N. Huang, Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization, J. Biomed. Mater. Res. - Part A. 102 (2014) 588–609. doi:10.1002/jbm.a.34714.
[3] J. Andersson, P. Libby, G.K. Hansson, Adaptive immunity and atherosclerosis, Clin. Immunol. 134 (2010) 33–46. doi:10.1016/j.clim.2009.07.002.
[4] H.N. Patel, K.N. Thai, S. Chowdhury, R. Singh, Y.K. Vohra, V. Thomas, In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft., Prog. Biomater. 4 (2015) 67–76. doi:10.1007/s40204-015-0038-y.
[5] N. Thottappillil, P.D. Nair, Scaffolds in vascular regeneration: current status., Vasc. Health Risk Manag. 11 (2015) 79–91. doi:10.2147/VHRM.S50536.
[6] J.M. Rhodes, M. Simons, The extracellular matrix and blood vessel formation: not just a scaffold., J. Cell. Mol. Med. 11 (2007) 176–205. doi:10.1111/j.1582-4934.2007.00031.x.
[7] M. Boffito, S. Sartori, G. Ciardelli, Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies, Polym. Int. 63 (2014) 2–11. doi:10.1002/pi.4608.
[8] B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: General approaches and tissue-specific considerations, Eur. Spine J. 17 (2008). doi:10.1007/s00586-008-0745-3.
[9] M.S. Shoichet, Polymer scaffolds for biomaterials applications, Macromolecules. 43 (2010) 581–591. doi:10.1021/ma901530r.
[10] N. Goonoo, A. Bhaw-Luximon, G.L. Bowlin, D. Jhurry, An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering, Polym. Int. 62 (2013) 523–533. doi:10.1002/pi.4474.
[11] N. Burke, A. and Hasirci, Biomaterials: From Molecules to Engineered Tissues, 2004.
[12] J. Kucińska-Lipka, I. Gubańska, H. Janik, Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose, Polimery/Polymers. 59 (2014) 197–200. doi:10.14314/polimery.2014.197.
[13] S. Ravi, E. Chaikof, Biomaterials for vascular tissue engineering, Regen. Med. 5 (2010) 1–21. doi:10.2217/rme.09.77.Biomaterials.
[14] C.S. Wong, X. Liu, Z. Xu, T. Lin, X. Wang, Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft, J. Mater. Sci. Mater. Med. 24 (2013) 1865–1874. doi:10.1007/s10856-013-4937-y.
[15] L. Elomaa, Y.P. Yang, Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs, Tissue Eng. Part B Rev. 23 (2017) ten.teb.2016.0348. doi:10.1089/ten.teb.2016.0348.
[16] W.-C. Lin, D.-G. Yu, M.-C. Yang, Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate., Colloids Surf. B. Biointerfaces. 44 (2005) 82–92. doi:10.1016/j.colsurfb.2005.05.015.
[17] W.L. Stoppel, C.E. Ghezzi, S.L. McNamara, L.D.B. III, D.L. Kaplan, Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine, Ann. Biomed. Eng. 43 (2015) 657–680. doi:10.1007/s10439-014-1206-2.
[18] F. Xu, J.C. Nacker, W.C. Crone, K.S. Masters, The haemocompatibility of polyurethane-hyaluronic acid copolymers, Biomaterials. 29 (2008) 150–160. doi:10.1016/j.biomaterials.2007.09.028.
[19] V. Catto, S. Far??, I. Cattaneo, M. Figliuzzi, A. Alessandrino, G. Freddi, A. Remuzzi, M.C. Tanzi, Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility, Mater. Sci. Eng. C. 54 (2015) 101–111. doi:10.1016/j.msec.2015.05.003.
[20] J.M. Caves, V.A. Kumar, A.W. Martinez, J. Kim, C.M. Ripberger, C.A. Haller, E.L. Chaikof, The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts, Biomaterials. 31 (2010) 7175–7182. doi:10.1016/j.biomaterials.2010.05.014.
[21] S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Adv. Drug Deliv. Rev. 61 (2009) 1007–1019. doi:10.1016/j.addr.2009.07.012.
[22] D. Pezzoli, E. Cauli, P. Chevallier, S. Farè, D. Mantovani, Biomimetic coating of cross-linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications, J. Biomed. Mater. Res. - Part A. 105 (2017) 2405–2415. doi:10.1002/jbm.a.36098.
[23] K.A. Rocco, M.W. Maxfield, C.A. Best, E.W. Dean, C.K. Breuer, In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review, Tissue Eng. Part B Rev. 20 (2014) 628–640. doi:10.1089/ten.teb.2014.0123.
[24] K. Singha, M. Singha, Cardio Vascular Grafts: Existing Problems and Proposed Solutions, Int. J. Biol. Eng. 2 (2012) 1–8. doi:10.5923/j.ijbe.20120202.01.
[25] V. Laterreur, J. Ruel, F.A. Auger, K. Vallières, C. Tremblay, D. Lacroix, M. Tondreau, J.M. Bourget, L. Germain, Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes, J. Mech. Behav. Biomed. Mater. 34 (2014) 253–263. doi:10.1016/j.jmbbm.2014.02.017.
[26] M.S. Baguneid, A.M. Seifalian, H.J. Salacinski, D. Murray, G. Hamilton, M.G. Walker, Tissue engineering of blood vessels, Br. J. Surg. 93 (2006) 282–290. doi:10.1002/bjs.5256.
[27] B. Seal, Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng. R Reports. 34 (2001) 147–230. doi:10.1016/S0927-796X(01)00035-3.
[28] H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering, Biomaterials. 24 (2003) 4353–4364. doi:10.1016/S0142-9612(03)00339-9.
[29] S. Sartori, A. Rechichi, G. Vozzi, M. D’Acunto, E. Heine, P. Giusti, G. Ciardelli, Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers, React. Funct. Polym. 68 (2008) 809–821. doi:10.1016/j.reactfunctpolym.2007.12.002.
[30] S.R. Meyers, M.W. Grinstaff, Biocompatible and bioactive surface modifications for prolonged in vivo efficacy, Chem. Rev. 112 (2012) 1615–1632. doi:10.1021/cr2000916.
[31] P. Qi, M.F. Maitz, N. Huang, Surface modification of cardiovascular materials and implants, Surf. Coatings Technol. 233 (2013) 80–90. doi:10.1016/j.surfcoat.2013.02.008.
[32] A.S. Hoffman, Blood—Biomaterial Interactions: An Overview, in: Biomater. INTERFACIAL Phenom. Appl., 1982: pp. 3–8. doi:10.1021/ba-1982-0199.ch001.
[33] S. Sarkar, K.M. Sales, G. Hamilton, A.M. Seifalian, Addressing Thrombogenicity in Vascular Graft Construction, (2006) 100–108. doi:10.1002/jbmb.
[34] P. Ferreira, P. Alves, P. Coimbra, M.H. Gil, Improving polymeric surfaces for biomedical applications: a review, J. Coatings Technol. Res. 12 (2015) 463–475. doi:10.1007/s11998-015-9658-3.
[35] A. de Mel, C. Bolvin, M. Edirisinghe, G. Hamilton, A.M. Seifalian, Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology, Expert Rev Cardiovasc Ther. 6 (2008). doi:10.1586/14779072.6.9.1259.
[36] I.H. Jaffer, J.C. Fredenburgh, J. Hirsh, J.I. Weitz, Medical device-induced thrombosis: What causes it and how can we prevent it?, J. Thromb. Haemost. 13 (2015) S72–S81. doi:10.1111/jth.12961.
[37] Y. Feng, H. Zhao, L. Zhang, J. Guo, Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility, Front. Chem. Eng. China. 4 (2010) 372–381. doi:10.1007/s11705-010-0005-z.
[38] G.T. Howard, Biodegradation of polyurethane: A review, Int. Biodeterior. Biodegrad. 49 (2002) 245–252. doi:10.1016/S0964-8305(02)00051-3.
[39] S. Sharifpoor, C.A. Simmons, R.S. Labow, J. Paul Santerre, Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold, Biomaterials. 32 (2011) 4816–4829. doi:10.1016/j.biomaterials.2011.03.034.
[40] S.H. Ye, Y. Hong, H. Sakaguchi, V. Shankarraman, S.K. Luketich, A. DAmore, W.R. Wagner, Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content, ACS Appl. Mater. Interfaces. 6 (2014) 22796–22806. doi:10.1021/am506998s.
[41] X. Zhang, K.G. Battiston, J.E. McBane, L.A. Matheson, R.S. Labow, J.P. Santerre, Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments, Elsevier Ltd, 2016. doi:10.1016/B978-0-08-100614-6.00003-2.
[42] R. Hashizume, Y. Hong, K. Takanari, K.L. Fujimoto, K. Tobita, W.R. Wagner, The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy, Biomaterials. 34 (2013) 7353–7363. doi:10.1016/j.biomaterials.2013.06.020.
[43] W.S. Pierce, S. Branch, N.H. Insti-, Segmented Polyurethane : A Polyether Polymer, 2 (1968) 121–130.
[44] X. Ren, Y. Feng, J. Guo, H. Wang, Q. Li, J. Yang, X. Hao, J. Lv, N. Ma, W. Li, Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications, Chem. Soc. Rev. 44 (2015) 5680–5742. doi:10.1039/C4CS00483C.
[45] I. Adipurnama, M.-C. Yang, T. Ciach, B. Butruk-Raszeja, Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review, Biomater. Sci. 5 (2017) 22–37. doi:10.1039/C6BM00618C.
[46] M. Avci-Adali, G. Ziemer, H.P. Wendel, Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization--a review of current strategies., Biotechnol. Adv. 28 (2010) 119–29. doi:10.1016/j.biotechadv.2009.10.005.
[47] P. Punnakitikashem, D. Truong, J.U. Menon, K.T. Nguyen, Y. Hong, Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts, Acta Biomater. 10 (2014) 4618–4628. doi:10.1016/j.actbio.2014.07.031.
[48] X. Zhou, T. Zhang, D. Guo, N. Gu, A facile preparation of poly(ethylene oxide)-modified medical polyurethane to improve hemocompatibility, Colloids Surfaces A Physicochem. Eng. Asp. 441 (2014) 34–42. doi:10.1016/j.colsurfa.2013.08.070.
[49] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials, Semin. Immunol. 20 (2008) 86–100. doi:10.1016/j.smim.2007.11.004.
[50] B.D. Ratner, Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry., J. Dent. Educ. 65 (2001) 1340–1347.
[51] P. Alves, R. Cardoso, T.R. Correia, B.P. Antunes, I.J. Correia, P. Ferreira, Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves, Colloids Surfaces B Biointerfaces. 113 (2014) 25–32. doi:10.1016/j.colsurfb.2013.08.039.
[52] I.K. Jung, J.W. Bae, W.S. Choi, J.H. Choi, K.D. Park, Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations., J. Biomater. Sci. Polym. Ed. 20 (2009) 1473–82. doi:10.1163/092050609X12457419024109.
[53] H. QIU, Y. X., KLEE, D., PLUSTER, W., SEVERICH, B., and HOCKERY, Surface Modification of Polyurethane by Plasma-Induced Graft Polymerization of Poly(ethylene glycol) Methacrylate, J. Appl. Polym. Sci. 61 (1996) 2373–2382. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19960926)61:13%3C2373::AID-APP17%3E3.0.CO;2-5/full.
[54] H. Wang, Y. Feng, B. An, W. Zhang, M. Sun, Z. Fang, W. Yuan, M. Khan, Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering, J. Mater. Sci. Mater. Med. 23 (2012) 1499–1510. doi:10.1007/s10856-012-4613-7.
[55] W. Yuan, Y. Feng, H. Wang, D. Yang, B. An, W. Zhang, M. Khan, J. Guo, Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification, Mater. Sci. Eng. C. 33 (2013) 3644–3651. doi:10.1016/j.msec.2013.04.048.
[56] J. Kucinska-Lipka, I. Gubanska, H. Janik, M. Sienkiewicz, Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system, Mater. Sci. Eng. C. 46 (2015) 166–176. doi:10.1016/j.msec.2014.10.027.
[57] C. Leng, H.-C. Hung, S. Sun, D. Wang, Y. Li, S. Jiang, Z. Chen, Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins., ACS Appl. Mater. Interfaces. 7 (2015) 16881–8. doi:10.1021/acsami.5b05627.
[58] Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials, Adv. Mater. 27 (2015) 15–26. doi:10.1002/adma.201404059.
[59] T. Goda, K. Ishihara, Y. Miyahara, Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science, J. Appl. Polym. Sci. 132 (2015) 1–10. doi:10.1002/app.41766.
[60] M. Khan, J. Yang, C. Shi, Y. Feng, W. Zhang, K. Gibney, G.N. Tew, Surface Modification of Polycarbonate Urethane with Zwitterionic Polynorbornene via Thiol-ene Click-Reaction to Facilitate Cell Growth and Proliferation, Macromol. Mater. Eng. 300 (2015) 802–809. doi:10.1002/mame.201500038.
[61] M. Khan, J. Yang, C. Shi, Y. Feng, W. Zhang, K. Gibney, G.N. Tew, Manipulation of polycarbonate urethane bulk properties via incorporated zwitterionic polynorbornene for tissue engineering applications, RSC Adv. 5 (2015) 11284–11292. doi:10.1039/C4RA14608E.
[62] X. Cai, J. Yuan, S. Chen, P. Li, L. Li, J. Shen, Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions, Mater. Sci. Eng. C. 36 (2014) 42–48. doi:10.1016/j.msec.2013.11.038.
[63] Y. Yuan, F. Ai, X. Zang, W. Zhuang, J. Shen, S. Lin, Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone, Colloids Surfaces B Biointerfaces. 35 (2004) 1–5. doi:10.1016/j.colsurfb.2004.01.005.
[64] A.E. Aksoy, V. Hasirci, N. Hasirci, Surface Modification of Polyurethanes with Covalent Immobilization of Heparin, Macromol. Symp. 269 (2008) 145–153. doi:10.1002/masy.200850918.
[65] Y. Yan, X. Hong Wang, D. Yin, R. Zhang, A New Polyurethane/Heparin Vascular Graft for Small-Caliber Vein Repair, J. Bioact. Compat. Polym. 22 (2007) 323–341. doi:10.1177/0883911507078386.
[66] Y.J. Du, J.L. Brash, G. Mcclung, L.R. Berry, P. Klement, A.K.C. Chan, Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex, (2006). doi:10.1002/jbm.a.
[67] C. Chatelet, O. Damour, a Domard, Influence of the degree of acetylation on some biological properties of chitosan films., Biomaterials. 22 (2001) 261–268. doi:10.1016/S0142-9612(00)00183-6.
[68] X. Wang, K. He, W. Zhang, Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane-cell/hydrogel construct, J. Bioact. Compat. Polym. 28 (2013) 303–319. doi:10.1177/0883911513491359.
[69] V. Saucedo-Rivalcoba, A.L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, V.M. Castaño, (Chicken feathers keratin)/polyurethane membranes, Appl. Phys. A Mater. Sci. Process. 104 (2011) 219–228. doi:10.1007/s00339-010-6111-4.
[70] S. Yamamoto, H. Okamoto, M. Haga, K. Shigematsu, T. Miyata, T. Watanabe, Y. Ogawa, Y. Takagi, T. Asakura, Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin, J. Mater. Chem. B. 4 (2016) 938–946. doi:10.1039/C5TB02528A.
[71] G.A. Junter, P. Thébault, L. Lebrun, Polysaccharide-based antibiofilm surfaces, Acta Biomater. 30 (2016) 13–25. doi:10.1016/j.actbio.2015.11.010.
[72] V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym. 109 (2014) 102–117. doi:10.1016/j.carbpol.2014.03.039.
[73] M. Zuber, F. Zia, K.M. Zia, S. Tabasum, M. Salman, N. Sultan, Collagen based polyurethanes-A review of recent advances and perspective, Int. J. Biol. Macromol. 80 (2015) 366–374. doi:10.1016/j.ijbiomac.2015.07.001.
[74] F. Zia, K.M. Zia, M. Zuber, S. Kamal, N. Aslam, Starch based polyurethanes: A critical review updating recent literature, Carbohydr. Polym. 134 (2015) 784–798. doi:10.1016/j.carbpol.2015.08.034.
[75] J. Han, P. Lazarovici, C. Pomerantz, X. Chen, Y. Wei, P.I. Lelkes, Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering, Biomacromolecules. 12 (2011) 399–408. doi:10.1021/bm101149r.
[76] S. Li, D. Sengupta, S. Chien, Vascular tissue engineering: From in vitro to in situ, Wiley Interdiscip. Rev. Syst. Biol. Med. 6 (2014) 61–76. doi:10.1002/wsbm.1246.
[77] P.-H. Chen, H.-C. Liao, S.-H. Hsu, R.-S. Chen, M.-C. Wu, Y.-F. Yang, C.-C. Wu, M.-H. Chen, W.-F. Su, A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering, RSC Adv. 5 (2015) 6932–6939. doi:10.1039/C4RA12486C.
[78] Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids Surfaces B Biointerfaces. 60 (2007) 137–157. doi:10.1016/j.colsurfb.2007.06.019.
[79] J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, R.A. Sousa, S.S. Silva, L.F. Boesel, J.M. Oliveira, T.C. Santos, a P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends., J. R. Soc. Interface. 4 (2007) 999–1030. doi:10.1098/rsif.2007.0220.
[80] K.A. McKenna, M.T. Hinds, R.C. Sarao, P.C. Wu, C.L. Maslen, R.W. Glanville, D. Babcock, K.W. Gregory, Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials, Acta Biomater. 8 (2012) 225–233. doi:10.1016/j.actbio.2011.08.001.
[81] M. Salehi, M. Naseri-Nosar, S. Ebrahimi-Barough, M. Nourani, A. Khojasteh, S. Farzamfar, K. Mansouri, J. Ai, Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells, Cell. Mol. Neurobiol. (2017). doi:10.1007/s10571-017-0535-8.
[82] J.C. Park, Y.S. Hwang, J.E. Lee, K.D. Park, K. Matsumura, S.H. Hyon, H. Suh, Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis, J. Biomed. Mater. Res. 52 (2000) 669–677. doi:10.1002/1097-4636(20001215)52:4<669::AID-JBM11>3.0.CO;2-U.
[83] K.M. Zia, F. Zia, M. Zuber, S. Rehman, M.N. Ahmad, Alginate based polyurethanes: A review of recent advances and perspective, Int. J. Biol. Macromol. 79 (2015) 377–387. doi:10.1016/j.ijbiomac.2015.04.076.
[84] N. Nagiah, R. Johnson, R. Anderson, W. Elliott, W. Tan, Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers, Langmuir. 31 (2015) 12993–13002. doi:10.1021/acs.langmuir.5b03177.
[85] A. Duconseille, T. Astruc, N. Quintana, F. Meersman, V. Sante-Lhoutellier, Gelatin structure and composition linked to hard capsule dissolution: A review, Food Hydrocoll. 43 (2015) 360–376. doi:10.1016/j.foodhyd.2014.06.006.
[86] S. Farris, J. Song, Q. Huang, Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde, J. Agric. Food Chem. 58 (2010) 998–1003. doi:10.1021/jf9031603.
[87] S. Singh, K.V.R. Rao, K. Venugopal, R. Manikandan, Alteration in Dissolution Characteristics of Gelatin-Containing Formulations A Review of the Problem, Test Methods, and Solutions, Pharm. Technol. 23 (2002) 36–58.
[88] O.S. Rabotyagova, P. Cebe, D.L. Kaplan, Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation, Mater. Sci. Eng. C. 28 (2008) 1420–1429. doi:10.1016/j.msec.2008.03.012.
[89] P.X. Ma, Biomimetic materials for tissue engineering, Adv. Drug Deliv. Rev. 60 (2008) 184–198. doi:10.1016/j.addr.2007.08.041.
[90] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts, Acta Biomater. 10 (2014) 11–25. doi:10.1016/j.actbio.2013.08.022.
[91] P. Torricelli, M. Gioffrè, A. Fiorani, S. Panzavolta, C. Gualandi, M. Fini, M.L. Focarete, A. Bigi, Co-electrospun gelatin-poly(L-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition, Mater. Sci. Eng. C. 36 (2014) 130–138. doi:10.1016/j.msec.2013.11.050.
[92] K. Jalaja, N.R. James, Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose, Int. J. Biol. Macromol. 73 (2015) 270–278. doi:10.1016/j.ijbiomac.2014.11.018.
[93] J. Zhan, Y. Morsi, H. Ei-Hamshary, S.S. Al-Deyab, X. Mo, In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers, Front. Mater. Sci. 10 (2016) 90–100. doi:10.1007/s11706-016-0329-9.
[94] H. Wang, Y. Feng, M. Behl, A. Lendlein, H. Zhao, R. Xiao, J. Lu, L. Zhang, J. Guo, Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels, Front. Chem. Eng. China. 5 (2011) 392–400. doi:10.1007/s11705-011-1202-0.
[95] N. Detta, C. Errico, D. Dinucci, D. Puppi, D.A. Clarke, G.C. Reilly, F. Chiellini, Novel electrospun polyurethane/gelatin composite meshes for vascular grafts, J. Mater. Sci. Mater. Med. 21 (2010) 1761–1769. doi:10.1007/s10856-010-4006-8.
[96] P. Alves, J.F.J. Coelho, J. Haack, A. Rota, A. Bruinink, M.H. Gil, Surface modification and characterization of thermoplastic polyurethane, Eur. Polym. J. 45 (2009) 1412–1419. doi:10.1016/j.eurpolymj.2009.02.011.
[97] Y. Zhu, C. Gao, T. He, J. Shen, Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin, Biomaterials. 25 (2004) 423–430. doi:10.1016/S0142-9612(03)00549-0.
[98] B.A. Butruk-Raszeja, P.A. Trzaskowska, A. Kuźminska, T. Ciach, Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization, Open Chem. 14 (2016) 206–214. doi:10.1515/chem-2016-0020.
[99] Y. Zhu, C. Gao, J. Shen, Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility, Biomaterials. 23 (2002) 4889–4895. doi:10.1016/S0142-9612(02)00247-8.
[100] K. He, X. Wang, Rapid prototyping of tubular polyurethane and cell/hydrogel constructs, J. Bioact. Compat. Polym. 26 (2011) 363–374. doi:10.1177/0883911511412553.
[101] Y. Liu, M.B. Chan-Park, Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering, Biomaterials. 30 (2009) 196–207. doi:10.1016/j.biomaterials.2008.09.041.
[102] V. Mironov, V. Kasyanov, Z.S. Xiao, C. Eisenberg, L. Eisenberg, S. Gonda, T. Trusk, R.R. Markwald, G.D. Prestwich, Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel, Biomaterials. 26 (2005) 7628–7635. doi:10.1016/j.biomaterials.2005.05.061.
[103] J. Kucińska-Lipka, I. Gubańska, H. Janik, Gelatin-modified polyurethanes for soft tissue scaffold, Sci. World J. 2013 (2013). doi:10.1155/2013/450132.
[104] P. Losi, L. Mancuso, T. Al Kayal, S. Celi, E. Briganti, A. Gualerzi, S. Volpi, G. Cao, G. Soldani, Development of a gelatin-based polyurethane vascular graft by spray, phase-inversion technology, Biomed. Mater. 10 (2015). doi:10.1088/1748-6041/10/4/045014.
[105] A.M. Seifalian, A. Tiwari, G. Hamilton, H.J. Salacinski, Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering., Artif. Organs. 26 (2002) 307–20. http://www.ncbi.nlm.nih.gov/pubmed/11952502.
[106] N.Q. Tran, Y.K. Joung, E. Lih, K.M. Park, K.D. Park, RGD-conjugated in Situ forming hydrogels as cell-adhesive injectable scaffolds, Macromol. Res. 19 (2011) 300–306. doi:10.1007/s13233-011-0309-y.
[107] Y. Wang, Y. Yu, L. Zhang, P. Qin, P. Wang, One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance, J. Biomater. Sci. Polym. Ed. 26 (2015) 459–467. doi:10.1080/09205063.2015.1023242.
[108] C. Tao, J. Huang, Y. Lu, H. Zou, X. He, Y. Chen, Y. Zhong, Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering, Colloids Surfaces B Biointerfaces. 122 (2014) 439–446. doi:10.1016/j.colsurfb.2014.04.024.
[109] J.S. Lee, K. Lee, S.H. Moon, H.M. Chung, J.H. Lee, S.H. Um, D.I. Kim, S.W. Cho, Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels, Macromol. Biosci. 14 (2014) 1181–1189. doi:10.1002/mabi.201400052.
[110] J. Yang, W. Liu, J. Lv, Y. Feng, X. Ren, W. Zhang, REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells, J. Mater. Chem. B. 4 (2016) 3365–3376. doi:10.1039/C6TB00686H.
[111] M. Kushwaha, J.M. Anderson, C.A. Bosworth, A. Andukuri, W.P. Minor, J.R. Lancaster, P.G. Anderson, B.C. Brott, H.W. Jun, A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices, Biomaterials. 31 (2010) 1502–1508. doi:10.1016/j.biomaterials.2009.10.051.
[112] S.G. Wise, A. Waterhouse, P. Michael, M.K.C. Ng, Extracellular Matrix Molecules Facilitating Vascular Biointegration, J. Funct. Biomater. 3 (2012) 569–587. doi:10.3390/jfb3030569.
[113] T. Liu, S. Liu, K. Zhang, J. Chen, N. Huang, Endothelialization of implanted cardiovascular biomaterial surfaces: The development from in vitro to in vivo, J. Biomed. Mater. Res. - Part A. (2013) 3754–3772. doi:10.1002/jbm.a.35025.
[114] K. Hayashi, H. Fukumura, N. Yamamoto, In vivo thrombus formation induced by complement activation on polymer surfaces, J. Biomed. Mater. Res. 24 (1990) 1385–1395. doi:10.1002/jbm.820241010.
[115] C. Shi, W. Yuan, M. Khan, Q. Li, Y. Feng, F. Yao, W. Zhang, Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation, Mater. Sci. Eng. C. 50 (2015) 201–209. doi:10.1016/j.msec.2015.02.015.

QR CODE