簡易檢索 / 詳目顯示

研究生: 張江境
Chiang-ching Chang
論文名稱: 磺基丁二酸鈉二辛酯界面活性劑於NaCl水溶液中之吸附動力學研究
Adsorption Kinetics of Dioctyl Sodium Sulfosuccinate in Aqueous NaCl Solution
指導教授: 林析右
Shi-yow Lin
口試委員: 張鑑祥
none
楊明偉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 動態表面張力吸附離子型界面活性劑磺基丁二酸鈉二辛酯
外文關鍵詞: dynamic surface tension, adsorption, ionic surfactant, AOT
相關次數: 點閱:300下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用懸掛氣泡影像數位化測量儀,測量陰離子型界劑Dioctyl Sodium Sulfosuccinate (AOT)水溶液於10 mM及500 mM NaCl濃度下的平衡暨動態表面張力。繼而以實驗所得的平衡及動態張力曲線與不同理論模式做最佳化比對,以探討AOT界劑水溶液之吸附動力學。
因一般離子型界劑分子之表面張力通常在一秒左右即達平衡值,極難取得離子型界劑分子在水溶液中之完整的動態表面張力。在本研究中,我們嘗試在AOT界劑水溶液中添加10 mM及500 mM NaCl以獲得較完整之動態表面張力曲線,並藉由懸掛氣泡影像數位化測量儀所量測到的平衡及動態表面張力,進而參考文獻上已知的吸附模型,以探討離子型界劑AOT之吸附動力學。
本研究使用吸附等溫線(分別為非離子型Langmuir 模式、離子型Langmuir 模式、離子型Frumkin模式及離子型generalized Frumkin模式)來模擬AOT界劑在10 mM及500 mM NaCl水溶液中之動態暨平衡表面張力。添加10 mM NaCl之AOT界劑水溶液,以ionic-gF模式最能描述平衡張力曲線,假設質傳機制為擴散控制模擬之結果與動態張力曲線相當吻合,所得之擴散係數幾乎為定值(3.55±0.6)×10-6 cm2/s且接近Wilke-Chang equation所估計的值(D= 4.63×10-6 cm2/s),但Wilke-Chang equation計算所得的值是以純水為例進行估算而非NaCl水溶液,因此由Wilke-Chang equation計算所得的值應小於4.63×10-6 cm2/s,故合理推論其質傳機制為擴散控制。而添加500 mM NaCl之AOT界劑水溶液因缺少高張力數據導致無法藉由平衡張力模擬結果判斷何種模式最佳,假設質傳機制為擴散控制以ionic-gF模式模擬之結果最能描述動態張力曲線,於低濃度時模擬所得之擴散係數相當接近Wilke-Chang equation所估計的值,而濃度高於1.9×10-9 mol/cm3時擴散係數為(1.95±0.3)×10-6 cm2/s,低於Wilke-Chang equation所得的值,因此改以混合控制對高濃度部份進行模擬,其結果與動態張力曲線相當吻合但吸附速率常數並非維持定值,故懷疑我們並非使用正確的參數進行動態張力模擬因此難以決定其質傳機制。
最後以氣泡擴張實驗所得表面張力與相對濃度的關係來輔助確認最適化參數之準確性。以ionic-gF模式最為符合AOT界劑在10 mM NaCl水溶液中之實驗點,表示該模式於平衡張力曲線模擬得到的參數十分恰當;而各模式於AOT界劑在500 mM NaCl水溶液的實驗點模擬中皆存在偏差,推測是因為平衡張力曲線缺少高張力數據的關係,導致我們不容易尋找到最適化參數而無法適當描述擴張數據。


The dynamic surface tension (DST) for anionic surfactant AOT in aqueous NaCl solution (10 mM and 500 mM) onto a clean air-water interface was measured by using a video-enhanced pendant bubble tensionmeter. The dynamic surface tension and the equilibrium surface tension for aqueous AOT solutions with 10 and 500 mM NaCl onto a freshly created air-water interface was obtained. Then the comparison was made for the equilibrium surface tension data and the ionic model predictions. We assume that the mass transport was diffusion-controlled for AOT molecules in 10 and 500 mM NaCl solution. For AOT in aqueous 10 mM NaCl solution, the values of the diffusivity of AOT molecules were around (3.55±0.6)×10-6 cm2/s estimated from the ionic-gF fitting of dynamic surface tension profiles. Because the value from Wilke-Chang equation (D= 4.63×10-6 cm2/s) is not for NaCl solution but pure water as the solvent, the actual value should be lower than 4.63×10-6 cm2/s, so it is reasonable to state that the mass transport for AOT in aqueous 10 mM NaCl solution was diffusion-controlled. For AOT in aqueous 500 mM NaCl solution, the diffusivity values for lower AOT concentrations match the value from Wilke-Chang equation, and the diffusivity values are around (1.95±0.3)×10-6 cm2/s for the AOT concentrations larger than 1.9×10-9 mol/cm3. These diffusivity values are lower than the value from Wilke-Chang equation so we fit the dynamic surface tension data for AOT concentrations larger than 1.9×10-9 mol/cm3 by a mixed controlled ionic-gF model. The fittings are great but the values of adsorption rate constants are not the same. So we do not believe that the parameters from the equilibrium surface tension fitting are good enough to fit the dynamic surface tension curves due to the higher equilibrium surface tension data cannot be obtained from experiments. That is the difficulty for us to decide the mass transport mechanism in this study.

中文摘要.........................................I 英文摘要.........................................II 誌謝............................................III 目錄............................................IV 圖目錄...........................................V 表目錄...........................................VI 第一章 簡介.......................................1 1.1 界面活性劑的特性...............................1 1.2 界面活性劑分類.................................3 1.3 研究主題......................................4 第二章 文獻回顧....................................5 2.1 界劑分子在氣-液之吸附行為........................5 2.2 非離子型界劑分子之質傳理論........................7 2.2.1 Langmuir adsorption model..................9 2.2.2 Frumkin and generalized Frumkin models.....10 2.3 離子型界劑分子之質傳理論..........................12 2.4 界劑水溶液之表面張力量測..........................15 第三章 張力量測方法..................................16 3.1 懸掛氣泡影像數位化測量儀..........................16 3.1.1懸掛氣泡法量測界面張力之理論...................16 3.1.2硬體設備...................................18 3.2 其它實驗儀器....................................20 3.3 實驗藥品.......................................21 3.4 實驗方法.......................................21 3.4.1 溶液配製..................................21 3.4.2 實驗流程..................................22 第四章 AOT之吸附行為.................................24 4.1 AOT+10 mM NaCl之實驗結果........................24 4.2 AOT+500 mM NaCl之實驗結果.......................27 4.3濃度修正........................................30 4.4決定模式與參數...................................34 4.5結果討論........................................38 第五章 結論與建議....................................44 參考文獻...........................................45

1. 張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
2. D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
3. 刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
4. 李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
5. B. J. Palla, D. O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
6. T. M. Pan, T. F. Lei, C. C. Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
7. J. T. Davies, “Adsorption of long-chain ions I,” Proc. R. SOC. London, 1958, a245,417.
8. J. T. Davies, “Adsorption of long-chain ions Ⅱ,” Proc. R. SOC. London, 1958, a245 426.
9. S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics,” Colloid Polym. Sci., 1983, 261, 335.
10. R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. Numerical calculations of the influence of a quasiequilibrium electric double layer,” Colloid Polym. Sci., 1985, 263, 420.
11. R. P. Borwanker, D. T. Wasan, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 2.Numerical calculations of the influence of a quasi-equilibrium electric double layer,” Chem. Eng. Sci., 1986, 41, 199.
12. R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces,” Chem. Eng. Sci., 1988, 43, 1323.
13. S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 3.Generalization of the model,” Chem. Eng. Sci., 1991, 269, 923.
14. C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface,” Colloids Surfaces, 1992, 69, 189.
15. C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate,” Colloid Polym. Sci, 1994, 272, 447.
16. C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
17. S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
18. V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analyses with fluorescence images,” Langmuir, 19.
19. S. Hachisua, “Equation of state of ionized monolayers,” J. Colloid Interface Sci., 1970, 33, 445.
20. V. V. Kalinin, C. J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces,” Colloids Surf. A., 1996, 114, 337.
21. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
22. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
23. P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment,” J. Phys. Chem. B, 1998, 102, 10948.
24. P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of Salts of various valency,” Langmuir, 1999, 15, 2351.
25. K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity,” Langmuir, 2000, 16, 2942.
26. A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models,” Colloids Surf. A., 2001, 178, 1.
27. P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces,” Langmuir, 2002, 18, 2506.
28. V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations,” Langmuir, 2002, 18, 9106.
29. G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions,” Colloids Surf. A., 2003, 222, 213.
30. P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces I. sodium dodecyl sulfate and dodecanol,” Langmuir, 2003, 19, 504.
31. A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems,” J. Colloid Interface Sci., 2003, 263, 606.
32. D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface,” Langmuir, 2004, 20, 4436.
33. T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase,” Colloids Surf. A., 2005, 261, 29.
34. G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,” Colloids Surf. A., 2005, 261, 65.
35. P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface,” Langmuir, 2005, 21, 3436.
36. I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants,” Adv. Colloid Interface Sci., 2006, 123, 189.
37. G. Para, P. Warszynski, A. Lips, “ACationic surfactant adsorption in the presence of divalent ions,” Colloids Surf. A., 2007, 300, 346.
38. J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the Role of alkyl chain length and electrolyte and comparison with theoretical predictions,” Langmuir, 2007, 23, 3128.
39. E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants,” Colloids Surf. A., 2008, 319, 29.
40. J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface,” Langmuir, 2008, 24, 3171.
41. S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, 1991.
42. G. D. J. Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
43. P. C. Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
44. K. J. Stebe, S. Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego; Chapter 2, 2001.
45. R. Y. Tsay, S. C. Yan, S. Y. Lin, “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics,” Rev. Sci. Instrum., 1995, 66, 5065.
46. J. F. Baret, “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface,” J. Colloid Interface Sci., 1969, 30, 1.
47. R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge; Chapters 1 and 3, 1973.
48. V. B. Fainerman, S. V. Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
49. A. Z. Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
50. S. Y. Lin, T. L. Lu, W. B. Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
51. S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
52. Y. C. Lee, Y. B. Liou, R. Miller, H. S. Liu, S. Y. Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
53. D. O. Johnson, K. J. Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
54. J. F. Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
55. R. P. Borwankar, D. T. Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
56. D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
57. V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
58. R. Miller, K. Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
59. P. Joos, G. Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
60. S. Y. Lin, K. Mckeigne, C. Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
61. S. Y. Lin, K. Mckeigne, C. Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
62. C. A. Maclleod, C. J. Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
63. P. S. de Laplace, Mechanique Celeste, Supplement to book, 1806, 10.
64. R. Y. Tsay, T. F. Wu, S. Y. Lin, “Observation of G-LE and LE-LC Phase Transitions of Adsorbed 1-Dodecanol Monolayer from Dynamic Surface-Tension Profiles,” J. Phys. Chem. B, 2004, 108, 18623.
65. S. S. Datwani, K. J. Stebe, “Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
66. W. J. Musnicki, N. W. Lloyd, R. J. Phillips, S. R. Dungan, “Diffusion of Sodium Dodecyl Sulfate Micelles in Agarose Gels,” J. Colloid Interface Sci., 2011, 356, 165.

QR CODE