簡易檢索 / 詳目顯示

研究生: 林昕儫
Hsin-Hao Lin
論文名稱: 人體胸腰椎個體化有限元素分析於正常、骨融合與運動保存情況之生物力學研究
Biomechanical Study of the Human Thoracolumbar Spine in Intact, Lumbar Fusion, and Motion Preservation Conditions Using Patient-Specific Finite Element Analysis
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
釋高上
Kao-Shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 144
中文關鍵詞: 腰椎椎間融合術棘突間裝置骨骼材料映射有限元素分析
外文關鍵詞: Lumbar interbody fusion, Interspinous process device, Material mapping, Finite element analysis
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人體腰椎隨著年紀增長經常產生各種退化性疾病,最有效的治療手段便是採取手術治療。其中,腰椎椎間融合術(LIF)是最為普遍的手術方法之一,以及植入棘突間裝置的非融合手術也在近年被經常使用。透過電腦模擬分析,有助於進一步了解手術行為在生物力學上的影響。過往模型在材料性質的決定上,多半是依照骨骼結構各自給定材料參數。近年來,也出現了基於 CT 影像的亨氏單位(HU)對模型元素分配材料性質的方法。然而,很少研究針對這兩種材料性質設定方法進行比較,且模型幾何多半經過簡化。因此本研究目的,是使用基於 CT 影像建立的患者特異性之人體胸腰椎有限元模型,了解不同的骨骼材料性質之設定方式,對於完整模型與手術模型的生物力學之影響和差異。
本研究透過 Amira 針對 CT 影像初步建立出 T10-S 三維胸腰椎表面模型,並透過 Freeform 和 Geomagic Wrap 進行表面平滑處理並輸出實體模型,最後於 Ansys
Workbench 2022 R1 上進行有限元素分析。在完整模型的基礎上,建立 TLIF 腰椎
融合模型和棘突間裝置運動保存模型,並使用三種骨骼材料模式:Material mapping、Solid 和 Shell 進行設定。模型上的椎骨元件和植體皆為線彈性及等向性材料,椎間盤則採用 Mooney-Rivlin 公式定義之超彈性材料,韌帶部份以僅受拉伸彈簧元件來模擬。接觸條件除了小面關節為摩擦接觸,其他部份均為固定連結。邊界負載條件部份將薦椎底部視為固定端,以 400N 之從動負載模擬人體上半身重量,並於 T10頂面給定位移控制產生屈曲、伸展、側向彎曲及軸向旋轉之運動行為。結果部份針對椎間旋轉角度、椎間盤應力、小面關節壓力及植體應力等面向進行探討。
從分析結果來看,本研究預測之活動範圍(ROM)與過往研究相似。椎間旋轉角度和椎間盤應力的表現在三種骨骼材料模式之間,均有很高的相似度,而小面關節壓力的表現則出現較大的差異,並同時受到模型品質、接觸條件及關節間隙等多方因素影響。腰椎融合模型在手術節段(L3-L4)具有較低的椎間旋轉角度及椎間盤應力,在鄰近節段的椎間旋轉角度及椎間盤應力則相對較高。運動保存模型相對於腰椎融合模型,在手術節段具有較好的椎間旋轉角度及椎間盤應力之表現。腰椎融合模型的植體應力相對的遠低於運動保存模型。針對三種骨骼材料模式進行相關性比較,實體元素模型比起薄殼元素模型,更加能夠表現出近似於骨骼材料映射模型的結果。骨骼材料映射模型的分析水準,更加接近真實人體生物力學實驗的表現。


The most effective treatment strategy for the human lumbar degenerative diseases is surgery. Computer simulation is one of the effective methods for understanding the biomechanics of various surgical treatment strategies. However, only some studies have considered the bone material distribution based on computed tomographic scan images. Thus, this study aims to develop patient-specific finite element models of the human thoracolumbar spine and investigate the biomechanical outcomes of the thoracolumbar
spine with intact, lumbar fusion, and motion preservation conditions.
A three-dimensional thoracolumbar spine model was established based on CT images using ANSYS Workbench. Three different bone material models were considered and discussed, including the material mapping model, the solid element model, and the shell element model. Besides, one intact and two treated thoracolumbar spine models were developed. The treaded models included the lumbar fusion model and the motion preservation model. Six types of human spinal movements with a follower load of 400 N
were considered as the loading condition. In postprocessing, the intersegmental rotation, disc stress, facet joint pressure, and implant stress were analyzed and discussed. The results show that the range of motion predicted by the present study was similar to that of the past studies. The lumbar fusion model revealed lower intersegmental rotation and disc stress at the index level and higher intersegmental rotation and disc stress at the adjacent level compared to the intact model. The motion preservation model has better intersegmental rotation and disc stress than the lumbar fusion model. The implant stress of the lumbar fusion model is lower than that of the motion preservation model. Compared to the three bone material mapping methods, the solid element model could provide closer results to the material mapping model than the shell element model. The material mapping model, which considers the actual material distribution of the human thoracolumbar spine, was suggested.

中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景、動機與目的 1.2 人體脊椎解剖學 1.2.1 椎骨排列區域 1.2.2 單一椎骨特徵 1.2.3 椎間盤結構 1.2.4 脊椎韌帶 1.3 退化性脊椎疾病 1.3.1 椎間盤突出 1.3.2 椎間滑脫 1.3.3 椎管狹窄 1.3.4 小面關節退化 1.4 腰椎椎間融合手術 1.4.1 後路腰椎椎間融合術 1.4.2 前路腰椎椎間融合術 1.4.3 經椎間孔腰椎椎間融合術 1.4.4 側向腰椎椎間融合術 1.4.5 斜向腰椎椎間融合術 1.5 棘突間減壓手術 1.5.1 Wallis 棘突間裝置 1.5.2 X-Stop 棘突間裝置 1.5.3 Coflex 棘突間裝置 1.5.4 Diam 棘突間裝置 1.5.5 Superion 棘突間裝置 1.6 文獻回顧 1.6.1 回顧建立於 CT 影像的腰椎模型 1.6.2 回顧腰椎椎間融合模型 1.6.3 回顧棘突間裝置之應用 1.6.4 回顧傳統有限元模型劃分骨組織 1.6.5 回顧 Material mapping 方法 1.7 本文架構 第二章 材料與方法 2.1 研究方法及流程 2.2 有限元素分析法簡介 2.3 完整模型之建立 2.3.1 CT 影像建模 2.3.2 Ansys 骨組織劃分及椎間盤建立 2.4 手術模型之建立 2.4.1 腰椎融合模型 2.4.2 運動保存模型 2.5 有限元素分析設定 2.5.1 材料性質設定 2.5.2 接觸介面條件設定 2.5.3 網格化設定 2.5.4 邊界負載條件設定 2.5.5 收斂性分析 2.6 後處理及結果輸出 第三章 結果 3.1 收斂性分析 3.2 活動範圍之模型驗證 3.3 椎間旋轉角度 3.4 椎間盤應力 3.5 小面關節壓力 3.6 植體應力 3.6.1 椎弓根螺釘 3.6.2 螺釘連桿 3.6.3 椎籠 3.6.4 棘突間裝置 3.7 相關性比較 3.7.1 以椎間旋轉角度做比較 3.7.2 以椎間盤應力做比較 3.7.3 以小面關節壓力做比較 3.7.4 後處理方法之綜合比較 第四章 討論 4.1 骨骼材料模式之影響 4.2 手術行為之影響 4.3 不同運動方向之影響 4.4 模型品質對於後處理之影響 4.5 植體的失效風險 4.6 研究限制 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

[1] Kushchayev, S.V., et al. (2018). ABCs of the degenerative spine. Insights Imaging, 9(2), 253-274.
[2] Netter, F.H. (2014). Atlas of human anatomy, Professional Edition E-Book:
including NetterReference. com Access with full downloadable image Bank. :
Elsevier health sciences.
[3] Prescher, A. (1998). Anatomy and pathology of the aging spine. European journal of radiology, 27(3), 181-195.
[4] Kuo, C.-S., et al. (2010). Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure-a finite element study. BMC musculoskeletal disorders, 11(1), 1-13.
[5] Ibarz, E., et al. (2013). Instability of the lumbar spine due to disc degeneration. A finite element simulation. Advances in Bioscience and Biotechnology, 04(04), 548-556.
[6] Eliyas, J.K. and D. Karahalios. (2011). Surgery for degenerative lumbar spine
disease. Dis Mon, 57(10), 592-606.
[7] Lo, C.C., et al. (2011). Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF--a finite element study. Comput Methods Biomech Biomed Engin, 14(11), 947-56.
[8] Kim, Y.H., et al. (2020). Lumbar Interbody Fusion: Techniques, Pearls and Pitfalls. Asian Spine J, 14(5), 730-741.
[9] Shen, H., et al. (2019). Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study. World Neurosurg, 127, e1112-e1119.
[10] Pintauro, M., et al. (2017). Interspinous implants: are the new implants better than the last generation? A review. Curr Rev Musculoskelet Med, 10(2), 189-198.
[11] Huynh, K.T., I. Gibson, and Z. Gao. (2012). Development of a detailed human spine model with haptic interface. Haptics Rendering and Applications, 165-193.
[12] Chen, G., et al. (2010). A new approach for assigning bone material properties from CT images into finite element models. J Biomech, 43(5), 1011-5.
[13] Ibarz, E., et al. (2013). Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Biomed Res Int, 2013, 705185.
[14] Iorio, J.A., A.M. Jakoi, and A. Singla. (2016). Biomechanics of Degenerative
Spinal Disorders. Asian Spine J, 10(2), 377-84.
[15] Sarathi Banerjee, P. (2013). Morphological and Kinematic Aspects of Human Spine – As Design Inputs for Developing Spinal Implants. Journal of Spine, 02(04).
[16] Cramer, G.D. and S.A. Darby. (2013). Clinical anatomy of the spine, spinal cord, and ANS.
[17] Jarmey, C. (2018). The concise book of muscles. : North Atlantic Books.
[18] Zonn, A. (2020). Kazuistika fyzioterapeutické péče o pacienta s bolestí bederní páteře.
[19] Hsu, A.W., S.P. Cohen, and Y. Chen. (2020). Pathophysiology of Spinal Pain.
Spine Pain Care: A Comprehensive Clinical Guide, 43-54.
[20] Bermel, E.A., V.H. Barocas, and A.M. Ellingson. (2018). The role of the facet
capsular ligament in providing spinal stability. Comput Methods Biomech Biomed Engin, 21(13), 712-721.
[21] Ebraheim, N.A., et al. (2004). Functional anatomy of the lumbar spine. Seminars in Pain Medicine, 2(3), 131-137.
[22] Claeson, A.A. and V.H. Barocas. (2017). Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces. J Mech Behav Biomed Mater, 65, 127-136.
[23] Thoái hóa cột sống thắt lưng là gì Nguyên nhân và cách điều trị hiệu quả. Available from: https://jex.com.vn/cot-song/thoai-hoa-cot-song-that-lung-a869.html.
[24] Fehlings, M.G., et al. (2015). The Aging of the Global Population: The Changing Epidemiology of Disease and Spinal Disorders. Neurosurgery, 77 Suppl 4, S1-5.
[25] Gallucci, M., et al. (2007). Degenerative disease of the spine. Neuroimaging Clin N Am, 17(1), 87-103.
[26] Boos, N. and M. Aebi. (2008). Spinal disorders: fundamentals of diagnosis and treatment, vol. 1165, : Springer.
[27] Jentzsch, T., et al. (2013). Lumbar facet joint arthritis is associated with more coronal orientation of the facet joints at the upper lumbar spine. Radiology research and practice, 2013.
[28] Mobbs, R.J., et al. (2015). Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. Journal of spine surgery, 1(1), 2.
[29] Tay, B.B. and S. Berven. (2002). Indications, techniques, and complications of lumbar interbody fusion. in Seminars in neurology. 2002. Copyright© 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New ….
[30] Posterior Lumbar Interbody Fusion (PLIF) - Mr John Cunningham. Available from: https://cunningham.com.au/about-the-spine/lumbar-lower-back/plif/.
[31] Patil, C.G., et al. (2014). Interspinous device versus laminectomy for lumbar spinal stenosis: a comparative effectiveness study. The Spine Journal, 14(8), 1484-1492.
[32] Kim, Y.-H., et al. (2015). Biomechanical efficacy of a combined interspinous fusion system with a lumbar interbody fusion cage. International Journal of Precision Engineering and Manufacturing, 16(5), 997-1001.
[33] Nunley, P.D., et al. (2016). Interspinous Process Decompression: Expanding Treatment Options for Lumbar Spinal Stenosis. Biomed Res Int, 2016, 3267307.
[34] Parchi, P.D., et al. (2014). Biomechanics of interspinous devices. Biomed Res Int, 2014, 839325.
[35] Nunley, P.D., et al. (2018). Interspinous process decompression improves quality of life in patients with lumbar spinal stenosis. Minimally Invasive Surgery, 2018.
[36] Gala, R.J., G.S. Russo, and P.G. Whang. (2017). Interspinous implants to treat spinal stenosis. Curr Rev Musculoskelet Med, 10(2), 182-188.
[37] Wilke, H.J., et al. (2008). Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J, 17(8), 1049-56.
[38] Serhan, H., et al. (2011). Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. SAS J, 5(3), 75-89.
[39] Kim, D.H. and P.A. Anderson. (2007). Interspinous Process Distraction Devices for Spinal Stenosis. Seminars in Spine Surgery, 19(3), 206-214.
[40] Loguidice, V., et al. (2011). Rationale, design and clinical performance of the Superion® Interspinous Spacer: a minimally invasive implant for treatment of lumbar spinal stenosis. Expert Review of Medical Devices, 8(4), 419-426.
[41] Divya, V. and M. Anburajan. (2011). Finite element analysis of human lumbar spine. in 2011 3rd international conference on electronics computer technology. 2011. IEEE.
[42] Warren, J.M., A.P. Mazzoleni, and L.A. Hey. (2020). Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration. Int J Spine Surg, 14(4), 502-510.
[43] Wang, J.C., P.V. Mummaneni, and R.W. Haid. (2005). Current Treatment
Strategies for the Painful Lumbar Motion Segment: Posterolateral Fusion: Versus: Interbody Fusion. Spine, 30(16S), S33-S43.
[44] Ambati, D.V., et al. (2015). Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J, 15(8), 1812-22.
[45] Lo, C.C., et al. (2011). Biomechanical effect after Coflex and Coflex rivet
implantation for segmental instability at surgical and adjacent segments: a finite element analysis. Comput Methods Biomech Biomed Engin, 14(11), 969-78.
[46] Salvatore, G., et al. (2018). Biomechanical effects of metastasis in the
osteoporotic lumbar spine: A Finite Element Analysis. BMC Musculoskelet Disord, 19(1), 38.
[47] Stubbs, C.J., R. Larson, and D.D. Cook. (2020). Mapping spatially distributed material properties in finite element models of plant tissue using computed tomography. Biosystems Engineering, 200, 391-399.
[48] Sollmann, N., et al. (2021). MDCT-Based Finite Element Analyses: Are
Measurements at the Lumbar Spine Associated with the Biomechanical Strength of Functional Spinal Units of Incidental Osteoporotic Fractures along the Thoracolumbar Spine? Diagnostics (Basel), 11(3).
[49] The National Library of Medicine's Visible Human Project. 2019; Available from: https://www.nlm.nih.gov/research/visible/visible_human.html.
[50] 寶南生物科技有限公司-BIOMECH 整體脊柱解決方案. Available from:
http://www.paonan.com.tw/en-ww/products/products.php?SID=35.
[51] Zander, T., A. Rohlmann, and G. Bergmann. (2009). Influence of different
artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon),
24(2), 135-42.
[52] Morgan, E.F., H.H. Bayraktar, and T.M. Keaveny. (2003). Trabecular bone
modulus-density relationships depend on anatomic site. J Biomech, 36(7), 897-904.
[53] Keerthiwansa, R., et al. (2020). Hyperelastic material characterization: how the change in mooney-rivlin parameter values effect the model curve. in Materials Science Forum. 2020. Trans Tech Publ.
[54] Fan, W. and L.X. Guo. (2017). Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study. Comput Biol Med, 86, 75-81.
[55] Chen, S.H., et al. (2009). Biomechanical comparison between lumbar disc
arthroplasty and fusion. Med Eng Phys, 31(2), 244-53.
[56] Tsai, P.I., et al. (2016). Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches. Comput Biol Med, 76, 14-23.
[57] Asuero, A.G., A. Sayago, and A.G. González. (2007). The Correlation Coefficient: An Overview. Critical Reviews in Analytical Chemistry, 36(1), 41-59.
[58] Chang, T.-K., et al. (2019). Effects of Fusion Device Designs on Spine
Biomechanics: Computational Simulation for Smart Health Care. IEEE Consumer Electronics Magazine, 8(2), 84-89.
[59] Turbucz, M., et al. (2022). Development and Validation of Two Intact Lumbar Spine Finite Element Models for In Silico Investigations: Comparison of the Bone Modelling Approaches. Applied Sciences, 12(20).
[60] Zhu, J., et al. (2022). Biomechanical Evaluation of Transforaminal Lumbar
Interbody Fusion with Coflex-F and Pedicle Screw Fixation: Finite Element
Analysis of Static and Vibration Conditions. Orthop Surg, 14(9), 2339-2349.
[61] Nikkhoo, M., et al. (2020). Development of a novel geometrically-parametric patient-specific finite element model to investigate the effects of the lumbar lordosis angle on fusion surgery. J Biomech, 102, 109722.
[62] Woldtvedt, D.J., et al. (2011). Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
[63] Deyo, R.A., et al. (2013). Interspinous spacers compared with decompression or fusion for lumbar stenosis: complications and repeat operations in the Medicare population. Spine (Phila Pa 1976), 38(10), 865-72.
[64] Fan, W., L.X. Guo, and M. Zhang. (2021). Biomechanical analysis of lumbar
interbody fusion supplemented with various posterior stabilization systems. Eur Spine J, 30(8), 2342-2350.
[65] Zhang, Z., et al. (2018). Biomechanical Analysis of Lateral Lumbar Interbody Fusion Constructs with Various Fixation Options: Based on a Validated Finite Element Model. World Neurosurg, 114, e1120-e1129.

無法下載圖示
全文公開日期 2034/01/25 (校外網路)
全文公開日期 2034/01/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE