簡易檢索 / 詳目顯示

研究生: 黃名瑋
MING-WEI HUANG
論文名稱: 基植於量子卷積神經網路的工業大數據插補法與多輸出預測分析
Design of Industrial Big Data Imputation and Multiple Predictive Analytics based on Quantum Convolutional Neural Network
指導教授: 羅士哲
Shih-Che Lo
口試委員: 曹譽鐘
Yu-Chung Tsao
曾世賢
Shih-Hsien Tseng
羅士哲
Shih-Che Lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 工業4.0大數據預測分析深度學習量子計算量子深度學習量子卷積神經網路
外文關鍵詞: Industry 4.0, Big Data Predictive Analytics, Deep Learning, Quantum Computing, Quantum Deep Learning, Quantum Convolutional Neural Network
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業4.0的興起,智慧型裝置、網路與感測元件的普及也帶動了工業大數據分析的發展,從感測器獲得的資料種類愈趨複雜與多元化,對於輸出目標也從常見的單一輸出需求轉化為多輸出需求,此外,隨著數據的產生越來越大量且快速,數據也時常出現遺失值與雜訊產生等問題。因此對遺失數據的插補與多輸出預測之方法,仍是目前大數據分析中較具有研究價值的問題。
    本論文所研究的資料為多重輸入與多重鑽頭加工品質輸出預測的工業大數據資料。本研究將實驗分為兩個獨立的部分,第一部分實驗為將初始不完整的資料集中,含有缺失值的數據刪除後,再使用eXtreme梯度增強模型篩選出對於預測值相對重要的特徵,以此來建立含有不同缺失比率的數據集,接著利用不同的插補方法包括卷積神經網路插補法與混合傳統-量子卷積神經網路插補法來將這些數據集做完整的插補動作,進而分析不同插補方法在數據比率不同的情況下,比較數據集的還原程度,以及還原數據所花費的時間。
    第二部分實驗首先利用主成分分析法將原數據集進行特徵的降維,接著再分別使用卷積神經網路預測法與混合傳統-量子卷積神經網路預測法進行預測多鑽頭機台加工品質的動作。實驗結果顯示,所提出的混合傳統-量子卷積神經網路插補法與卷積神經網路插補法得出的準確度並無顯著差異,然而混合傳統-量子卷積神經網路預測法與卷積神經網路預測法的預測結果,經過雙樣本t檢定後顯示,混合傳統-量子卷積神經網路在多目標預測方面,有著優於卷積神經網路的準確性。


    The advent of Industry 4.0 has brought about a surge in the adoption of intelligent devices, networks, and sensing components, consequently driving the advancement of industrial big data analysis. As the nature of data acquired from sensors grows increasingly intricate and varied, the objectives for output have transitioned from traditional single output requirements to encompass multi-output requirements. Furthermore, the rapid generation of data has introduced challenges such as the occurrence of missing values and the generation of noise within the data. Consequently, the methods for addressing missing data through interpolation and achieving multi-output prediction remain areas of significant research value within the field of big data analytics.
    This thesis focuses on the analysis of industrial big data for the purpose of multiple output prediction of drill manufacturing quality. The study is divided into two distinct parts. In the first part, datasets with missing values are extracted from the initial incomplete data set. Subsequently, the eXtreme gradient boosting model is employed to identify the relatively significant features for predicting the target values. Multiple data sets with varying missing ratios are created, and different imputation methods, including convolutional neural network imputation and mixed classical-quantum convolutional neural network imputation, are employed to perform comprehensive data imputation on these sets. The analysis entails comparing the efficacy of different imputation methods under varying data ratios by assessing the degree of data restoration and the time required for restoration.
    In the second part of the experiment, the principal component analysis method is utilized to reduce the dimensionality of the original dataset. Subsequently, the convolutional neural network prediction method and the mixed classical-quantum convolutional neural network prediction method are employed to predict the quality of multi-drill machining actions. The experimental results indicate that there is no significant difference in accuracy between the proposed mixed classical-quantum convolutional neural network imputation method and the convolutional neural network imputation method. However, when comparing the prediction results of the mixed classical-quantum convolutional neural network prediction method with those of the convolutional neural network prediction method, the two-sample t-test demonstrates that the mixed classical-quantum convolutional neural network outperforms the convolutional neural network in terms of multi-objective prediction accuracy.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 導論 1 1.1研究背景與動機 1 1.2研究侷限 3 1.3研究目標 3 1.4研究貢獻 3 1.5研究流程 3 第二章 文獻回顧 5 2.1大數據(Big Data) 5 2.2數據插補(Data Imputation) 6 2.3主成分分析法(Principal Components Analysis) 7 2.4機器學習(Machine Learning) 7 2.5深度學習(Deep Learning) 8 2.6量子深度學習(Quantum Deep Learning) 9 第三章 混合量子卷積神經網路模型設計 11 3.1缺失數據(Missing Data) 11 3.2特徵篩選(Feature Selection) 11 3.3主成分分析法(Principal Components Analysis) 13 3.4卷積神經網路(Convolutional Neural Network) 13 3.5量子嵌入(Data Encoding) 16 3.6量子計算(Quantum Computing) 17 3.7混合傳統-量子卷積神經網路(Mixed Classical-Quantum Convolutional Neural Network) 20 3.8 卷積神經網路與混合傳統-量子卷積神經網路的插補法 29 3.9 卷積神經網路與混合傳統-量子卷積神經網路之多輸出預測 30 3.10預測績效指標 31 第四章 實驗與分析 32 4.1資料描述 32 4.2插補法實驗 32 4.3多輸出預測實驗 37 第五章 總結 45 5.1結論 45 5.2未來研究 45 Reference 46

    Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect on classifier accuracy. In Classification, Clustering, and Data Mining Applications: Proceedings of the Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15–18 July 2004 (pp. 639-647). Springer Berlin Heidelberg. (https://doi.org/10.1007/978-3-642-17103-1_60)
    Ajagekar, A., & You, F. (2020). Quantum computing assisted deep learning for fault detection and diagnosis in industrial process systems. Computers & Chemical Engineering, 143, 107119. (https://doi.org/10.1016/j.compchemeng.2020.107119)
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. (https://doi.org/10.1023/A:1010933404324)
    Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. In Processings of Harvard Symposium on Digital Computers and Their Applications (Vol. 72, p. 22). (https://doi.org/10.2307/2985915)
    Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347. (https://doi.org/10.1016/j.ins.2014.01.015)
    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19, 171-209. (https://doi.org/10.1007/s11036-013-0489-0)
    Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 785-794). (https://doi.org/10.1145/2939672.2939785)
    Chowdhury G. G. (2005). Natural language processing. Annual Review of Information Science and Technology, 37(1), 51-89. (https://doi.org/10.1002/aris.1440370103)
    Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12), 1273-1278. (https://doi.org/10.1038/s41567-019-0648-8)
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. (https://doi.org/10.1007/BF00994018)
    Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A survey of deep learning and its applications: a new paradigm to machine learning. Archives of Computational Methods in Engineering, 27, 1071-1092. (https://doi.org/10.1007/s11831-019-09344-w)
    De'ath, G., & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11), 3178-3192. (https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2)
    Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197-387. (https://doi.org/10.1561/2000000039)
    Deng, L., Hinton, G., & Kingsbury, B. (2013, May). New types of deep neural network learning for speech recognition and related applications: An overview. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8599-8603). (https://doi.org/10.1109/ICASSP.2013.6639344)
    Ezzahra, M. F., Nadia, A. F. I. F. I., & Imane, H. I. L. A. L. (2019, October). Big Data Dependability Opportunities & Challenges. In 2019 1st International Conference on Smart Systems and Data Science (ICSSD) (pp. 1-4). (https://doi.org/10.1109/ICSSD47982.2019.9002676)
    Feynman, R. P. (2018). Simulating physics with computers. In Feynman and Computation (pp. 133-153). CRC Press. (https://doi.org/10.1201/9780429500459-11)
    Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202. (https://doi.org/10.1007/BF00344251)
    Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC Iview, 1142(2011), 1-12. (https://doi.org/10.1108/03684920910973216)
    García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: a review. Neural Computing and Applications, 19, 263-282. (https://doi.org/10.1007/s00521-009-0295-6)
    Gobinda, G. C. (2003). Natural language processing. Annual Review of Information Science and Technology, 37, 51-89. (DOI: 10.1002/aris.1440370103)
    Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., ... & Severini, S. (2018). Hierarchical quantum classifiers. npj Quantum Information, 4(1), 65. (https://doi.org/10.1038/s41534-018-0116-9)
    Han, J., Lee, G. H., Lee, J., Kim, T. Y., & Choi, J. K. (2022). A Novel Deep-Learning-Based Robust Data Transmission Period Control Framework in IoT Edge Computing System. IEEE Internet of Things Journal, 9(23), 23486-23505. (https://doi.org/10.1109/JIOT.2022.3203156)
    Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106. (https://doi.org/10.1113/jphysiol.1962.sp006837)
    Kak, S. C. (1995). Quantum neural computing. Advances in Imaging and Electron Physics, 94, 259-313. (https://doi.org/10.1016/S1076-5670(08)70147-2)
    Kantardzic, M. (2011). Web Mining and Text Mining. In Data Mining: Concepts, Models, Methods, and Algorithms, Wiley-IEEE Press, pp.300-327(https://doi.org/10.1002/9781118029145.ch11)
    Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 3(2), 332-337. (https://doi.org/10.7763/IJCTE.2011.V3.328)
    Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10), 947-954. (https://doi.org/10.2514/8.5282)
    Kravchik, M., & Shabtai, A. (2018, January). Detecting cyber attacks in industrial control systems using convolutional neural networks. In Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and Privacy (pp. 72-83). (https://doi.org/10.1145/3264888.3264896)
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6(70), 1. (https://doi.org/ 10.1201/b16524-1)
    Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). (https://doi.org/ 10.1007/s11336-022-09856-8)
    Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631-633. (https://doi.org/10.1038/nphys3029)
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115-133. (https://doi.org/10.1007/BF02478259)
    Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., & Loos, P. (2017). Time series classification using deep learning for process planning: A case from the process industry. Procedia Computer Science, 114, 242-249. (https://doi.org/10.1016/j.procs.2017.09.066)
    Meijer, E. (2011). The world according to LINQ. Communications of the ACM, 54(10), 45-51. (https://doi.org/10.1145/2001269.2001285)
    Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning--based text classification: a comprehensive review. ACM Computing Surveys (CSUR), 54(3), 1-40. (https://doi.org/10.1145/3439726)
    Drygas, H. (2010). Douglas C. Montgomory, Elizabeth A. Peck, G. Geoffrey Vining (2006): An Introduction to Linear Regression Analysis. Statistical Papers, 51, 997–998 (https://doi.org/10.1007/s00362-008-0164-x)
    Ogunleye, A., & Wang, Q. G. (2019). XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(6), 2131-2140. (https://doi.org/10.1109/TCBB.2019.2911071)
    Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales, J. (2022). Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography. Expert Systems with Applications, 189, 116112. (https://doi.org/10.1016/j.eswa.2021.116112)
    Ozcanli, A. K., & Baysal, M. (2022). Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks. Sustainable Energy, Grids and Networks, 32, 100839. (https://doi.org/10.1016/j.segan.2022.100839)
    Parhizkar, T., Rafieipour, E., & Parhizkar, A. (2021). Evaluation and improvement of energy consumption prediction models using principal component analysis based feature reduction. Journal of Cleaner Production, 279, 123866. (https://doi.org/10.1016/j.jclepro.2020.123866)
    Paryasto, M., Alamsyah, A., & Rahardjo, B. (2014, May). Big-data security management issues. In 2014 2nd International Conference on Information and Communication Technology (ICoICT) (pp. 59-63). (https://doi.org/10.1109/ICoICT.2014.6914040)
    Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. (https://doi.org/10.1080/14786440109462720)
    Purushothaman, G., & Karayiannis, N. B. (1997). Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks. IEEE Transactions on Neural Networks, 8(3), 679-693. (https://doi.org/10.1109/72.572106)
    Ren, X., Guo, H., Li, S., Wang, S., & Li, J. (2017). A novel image classification method with CNN-XGBoost model. In Digital Forensics and Watermarking: 16th International Workshop, IWDW 2017, Magdeburg, Germany, August 23-25, 2017, Proceedings 16 (pp. 378-390). Springer International Publishing. (https://doi.org/10.1007/978-3-319- 64185-0_28)
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. (https://doi.org/10.1038/323533a0)
    Stoudenmire, E., & Schwab, D. J. (2016). Supervised learning with tensor networks. Advances in Neural Information Processing Systems, 29.
    Xu, Z., Selvaraj, V., & Min, S. (2022). State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model. Journal of Intelligent Manufacturing, 1-14. (DOI: 10.1007/s10845-022-02030-y)
    Yang, C. H. H., Qi, J., Chen, S. Y. C., Chen, P. Y., Siniscalchi, S. M., Ma, X., & Lee, C. H. (2021, June). Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6523-6527. (https://doi.org/10.1109/ICASSP39728.2021.9413453)
    Yanofsky, N. S., & Mannucci, M. A. (2008). Quantum Computing for Computer Scientists. Cambridge University Press. (https://doi.org/10.1017/CBO9780511813887)
    Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020-21031. (https://doi.org/10.1109/ACCESS.2018.2818678)
    Zhang, J., & Huang, M. L. (2013, December). 5Ws model for big data analysis and visualization. In 2013 IEEE 16th International Conference on Computational Science and Engineering (pp. 1021-1028). (https://doi.org/10.1109/CSE.2013.149)
    Zhuang, Y., Ke, R., & Wang, Y. (2019). Innovative method for traffic data imputation based on convolutional neural network. IET Intelligent Transport Systems, 13(4), 605-613. (https://doi.org/0.1049/iet-its.2018.5114)
    Zikopoulos, P., & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media. (https://doi.org/10.1002/9781119528043.ch3)

    無法下載圖示 全文公開日期 2026/08/08 (校內網路)
    全文公開日期 2026/08/08 (校外網路)
    全文公開日期 2026/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE