簡易檢索 / 詳目顯示

研究生: 黃志偉
Zhi-Wei Huang
論文名稱: 錳鋁鋼經空冷後生成沃斯田體魏德曼組織發生spinodal相分離與有序化相變化的研究
The study of spinodal decomposition and ordering reaction occurring in the Widmanstatten austenite of an Fe-Mn-Al steel upon air cooling
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 林原慶
Yuan-Ching Lin
黃育熙
Yu-Hsi Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 錳鋁鋼spinodal相分離有序化相變化魏德曼組織L12
外文關鍵詞: Fe-Mn-Al steels, spinodal decomposition, ordering reaction, Widmanstatten structure, L12
相關次數: 點閱:337下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

錳鋁合金鋼具有取代鎳鉻系不銹鋼的潛力,而錳鋁鋼相變化研究則是提供發展錳鋁不銹鋼的重要基礎。本論文是研究成份為鐵-6.3錳-7.9鋁-0.14碳(wt.%)錳鋁合金鋼的高溫相變化。實驗方法為加熱錳鋁鋼至1300℃至1100℃溫度區間後,以水淬或空冷方式冷卻至室溫。經分析後確認本錳鋁鋼於1200℃以上溫度為單相的肥粒體,而於1100℃為肥粒體與少量沃斯田體的雙相組織。我們發現經高溫空冷方式冷卻的肥粒體晶粒內析出大量的沃斯田體魏德曼組織,而於魏德曼晶粒內存在著細小顆粒狀的L12相。推判此類魏德曼沃斯田體晶粒發生spinodal相分離與有序化相變化。總結如下:於空冷過程的高溫區,肥粒體基地(α)會先行生成沃斯田體魏德曼組織(Widγ);而後於冷卻過程的低溫區,此沃斯田體魏德曼晶粒內發生spinodal相分離與有序化相變化,使高溫沃斯田體魏德曼組織(γ)於較低溫時經spinodal相分離而分離成低溫無碳沃斯田體(γ’)與富碳沃斯田體(γ”),其反應式如下:γ→γ’+γ”;經spinodal相分離後的合金鋼冷卻至更低溫時,富碳之γ”相會經由有序化相變化而轉變為富碳之L12相,反應式為γ” →L12。以上的總反應式為:α→α+Wid(γ’+L12)。


Mn-Al steels have the potential to substitute some commercial Ni-Cr stainless steels. For the development of Mn-Al stainless steels, phase transformations play an important role for the provision of the basic knowledge of the steels. The methodology of studying the phase transformations of the Fe-6.3 Mn-7.9 Al-0.14 C (wt.%) steel includes heating the steel samples to high temperatures ranging from 1300℃ to 1100℃ and air-cooling to room temperature. The steel is single ferrite (α) at temperature above 1200℃, and is dual phase of ferrite and austenite at 1100℃. Lots of Widmanstatten austenite grains appear in the ferrite matrix after air cooling from high temperature. We have also found the Widmanstatten austenite grain is composed of austenite and fine L12 particles via the observation in a transmission electron microscope. We have found the occurrence of the spinodal decomposition and ordering reaction in the Widmanstatten austenite after air cooling from high temperature. At the high temperature stage of air cooling, austenite has undergone the spinodal decomposition and decomposes into two other low temperature austenite phases. One is carbon-lean austenite (γ’), and the other is carbon-enriched austenite (γ”). The spinodal decomposition is shown as follows. γ→γ’+γ”. Upon further cooling, the carbon-enriched austenite has undergone the ordering reaction and becomes the L12 phase, i.e. γ” →L12. The overall reactions occur in the high temperature ferrite is as follows. α→α+Widγ→α+Wid(γ’+γ”) →α+Wid(γ’+L12).

第一章 簡介 1 第二章 文獻回顧 4 2.1相變化 4 2.2鐵錳鋁合金相變化之研究 10 2.3研究動機 16 第三章 實驗方法 26 3.1 合金鋼熔鑄 26 3.2 鑄錠加工 27 3.3 熱處理 28 3.4 試片製備流程 28 3.5 分析儀器 33 第四章 結果與討論 43 1300℃ 空冷 43 1300℃ 水淬 49 1200℃ 空冷 49 1200℃ 水淬 52 1100℃ 空冷 53 1100℃ 水淬 54 第五章 結論 95 參考文獻 97

1.D. A. Porter and K. E. “Easterling, Phase Transformations in Metals and Alloys”, 3th ed, Nelson Thornes (2008).
2.李文彬,“雙相鐵錳鋁碳合金麻田散鐵相變化研究”,國立清華大學,博士論文 (1997)。
3.X. J. Liu, S. M. Hao, L.Y. Xu, Y. F. Olio, and H. Chen, Metall. Trans. A, 27A, 2429 (1996).
4.S. K. Chen, K. W. Chour, W. B. Lee, C. M. Wan, J. G. Byrne, Mat. Res. Bull., 25, 1115 (1990).
5.W. S. Yang, T. B. Wu, C. M. Wan, Scripta Metall., 24, 895 (1990).
6.K. H. Hwang, C. M. Wan, J. G. Byrne, Scripta Metall., 24, 979 (1990).
7.W. C. Cheng, H. Y. Lin, Mat. Sci. Eng., A, 341, 106 (2003).
8.H. Huang, D. Gan and P. W. Kao, Scripta Metall., 30, 499 (1994).
9.M. C. Li, H. Chang, P. W. Kao and D. Gan, Mater. Chem. Phys., 59, 96 (1999).
10.J. W. Lee, C. C. Wu and T. F. Liu, Scripta Mater., 50, 1389 (2004).
11.C. M. Liu, H. C. Cheng, C. Y. Chao and K. L. Ou, J. All. Comp., 488, 52 (2009).
12.T. F. Liu and C. M. Wan, Scripta Metall., 19, 727 (1985).
13.Y. L. Lin and C. P. Chou, Scripta Metall., 27, 67 (1992).
14.D. S. Zhou and G. J. Shiflet, Scripta Metall., 27, 1215 (1992).
15.徐享欽,“鐵-6錳-8鋁-低碳合金之相變化研究”,國立台灣科技大學,碩士論文 (2004)。
16.K. Sato, K. Tagawaand and Y. Inoue, Scripta Metall., 22, 899 (1988).
17.K. Sato, K. Tagawaand and Y. Inoue, Mater. Sci. Eng. A, 111, 45 (1989).
18.Y. G. Kim, Y. S. Park and J. K. Han, Metall. Trans. A, 16, 1689 (1985).
19.K. Sato, K. Tagawaand and Y. Inoue, Metall. Trans. A, 21, 5 (1990).
20.K. H. Han, Mater. Sci. Eng. A, 197, 223 (1995).
21.W. K. Choo, J. H. Kimand and J. C. Yoon, Acta Mater., 45, 4877 (1997).
22.C. S. Wang, C. N. Hwang, C. G. Chao and T. F. Liu, Scripta Mater., 57, 809 (2007).
23.邱韋霖,“鐵-12錳-4鋁-1.3碳合金鋼之相變化研究”,國立台灣科技大學,碩士論文 (2016)。
24.W. A. Soffa and D. E. Laughlin, Acta Metall., 37, 3019 (1989).
25.R. Oshima and C. M. Wayman, Metall. Trans., 3, 2163 (1972).
26.林郁珊,“以方位影像顯微學分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化”,國立台灣科技大學,碩士論文 (2014)。
27.D. A. Poter and K. E. Eastering, Phase Transformations in Metals and Alloys, 2nd ed. (1992).
28.W. C. Cheng , Hsin-Yu Lin, Materials Science and Engineering A323 462 (2002)
29.W. C. Cheng , Chih-Yao Cheng, Chia-Wei Hsu, David E. Laughlin, Materials Science & Engineering A642, 128 (2015)
30.W. A. Soffa and D. E. Laughlin, Prog. Mater. Sci., 49, 347 (2004).
31.T. F. Liu and J. C. Tasy, Scripta Metall., 21, 1213 (1987)
32.W. S. Yang, T. B. Wu and C. M. Wan, Scripta Metall, 24, 895 (1990).
33.林信裕,“鐵錳鋁合金中BCC到FCC的相變化研究”,國立台灣科技大學,碩士論文 (2001)。
34.Z. Nishiyama, Martensitic Transformation, Academic Press (1978).
35.崔占全、王昆林、吳潤,“金屬學與熱處理”,北京大學出版社,236 (2010)。
36.T. B. Massaski, Metall. Trans. A, 15A, 421 (1984).
37.W. C. Cheng, S. M. Lin, W. L. Ciou, S. C. Kao, H. H. Wu, Spinodal decomposition and ordering reaction of an Fe-Mn-Al steel, (2015)
38.簡紹羽,“鐵-29錳-9鋁-0.1碳合金鋼之相變化研究”,國立臺灣科技大學,碩士論文 (2016)。

QR CODE