簡易檢索 / 詳目顯示

研究生: 王則彬
Tse-Pin - Wang
論文名稱: 合成具推拉電子基之苯乙烯芳烴分子及其光物理性質研究
Study on Synthesis and Photophysics of New Styrylarene Compounds with Electron Donor-Acceptor Groups
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 張家耀
Jia-Yaw Chang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 203
中文關鍵詞: 分子內電荷轉移
外文關鍵詞: intramolecular charge transfer
相關次數: 點閱:272下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,針對了共軛系統為[n]phenacene的具推拉電子基分子作光物理性質的研究。

[n]phenacene為多苯環芳香碳氫化合物分子,其共軛性佳且熱穩定性好,在本研究中,主要是以[n]phenacene為共軛系統合成一系列具推拉電子基的分子內電荷傳輸分子,本研究的推電子基為Triphenylamine,而拉電子基為-CN group,藉由具有顯著推拉電子能力的推電子基團與拉電子基團探討共軛系統之間共軛系統構形與共軛系統大小的差別。

本研究藉由吸收光譜、螢光光譜與循環伏安法探討了最大吸收波長、最大放光波長、螢光量子產率、消光係數與HOMO/LUMO等光物理性質,藉由上述之測量與結果探討共軛系統與推拉電子基之間的差異,以幫助未來研發出更具前瞻性與實用性的材料。

本研究以OLED光電材料為目的,開發了一系列的光電材料,這些材料具有應用在OLED的巨大潛力,本研究希望藉由這一系列的光電材料開發出更有效率及更環保的OLED元件,為地球環保盡一份心力。


In this research, we focus on synthesis research and on photophysics property research of [n]phenacene derivative compounds that have electron-donor group and electron-acceptor group. These are four final compounds I discuss and research mainly.

First, the research synthesizes four conjugated systems that are polycyclic aromatic hydrocarbon(PAHs) for their effective conjugation property and high thermal stability, and I choose triphenylamine as electron-donor group and cyanostyrene group as electron-acceptor group for their strong inductive effect.

Second, the research measures and discusses many photophysical properties such as uv-visible absorption spectroscopy, fluorescence spectroscopy, fluorescence quantum yield, molar extinction coefficient and cyclic voltammetry, giving much information to let us know about these compounds properties and helping us to design the new compounds in the future.

Finally, these compounds have potential on OLED application that are worth for us to think about it.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIV 前言 多芳香環碳氫分子及有機光電材料之簡介 1 第一章 緒論 7 第一節 有機發光二極體之發展與介紹 7 第二節 多芳香環碳氫分子應用於有機發光二極體之文獻回顧 10 第一項 Anthracene衍生化合物的相關發展 10 第二項 Chrysene衍生化合物的相關發展 14 第三項 Phenanthrene衍生化合物的相關發展 16 第四項 Naphthalene衍生化合物的相關發展 19 第五項 文獻回顧之總結 20 第三節 有機偶合反應之介紹 21 第一項 鈴木反應 21 第二項 赫克反應 22 第四節 分子光物理性質之理論介紹 23 第一項 分子內電荷轉移 23 第二項 溶劑效應 25 第三項 斯托克斯位移 26 第四項 偶極矩探討 27 第五項 螢光量子產率 28 第五節 研究動機及目的 29 第二章 結果與討論 31 第一節 化合物結構與代號 31 第二節 化合物於溶液中的光物理性質研究 32 第一項 F2L2於溶液中的光物理性質探討 32 第二項 F3L4於溶液中的光物理性質探討 35 第三項 F3W4於溶液中的光物理性質探討 38 第四項 F4W7於溶液中的光物理性質探討 41 第三節 化合物共軛系統對於光物理性質的影響 44 第一項 共軛系統對於最大吸收波長的探討 44 第二項 共軛系統對於螢光放光波長的探討 46 第四節 化合物於溶液中的吸收度 48 第一項 化合物於Acetone的吸收度 50 第二項 化合物於Acetonitrile的吸收度 52 第三項 化合物於Cyclohexane的吸收度 54 第四項 化合物於Dichloromethane的吸收度 56 第五項 化合物於Dibutylether的吸收度 58 第六項 化合物於Dimethylformamide的吸收度 60 第七項 化合物於Dimethyl sulfoxide的吸收度 62 第八項 化合物於Ethyl acetate的吸收度 64 第九項 化合物於Methanol的吸收度 66 第十項 化合物於Tetrahydrofuran的吸收度 68 第十一項 化合物於Toluene的吸收度 70 第五節 斯托克斯位移 72 第六節 分子內電荷傳遞效應與激發態偶極矩 73 第一項 利用Lippert-Mataga plot評估化合物的分子內電荷傳遞效應 73 第二項 激發態偶極矩 76 第七節 螢光量子產率 78 第八節 各化合物的電化學分析 82 第九節 理論計算與實際量測 89 第十節 各材料的熱性質分析 95 第三章 結論 96 第一節 結論 96 第二節 本研究的未來延伸 98 第四章 實驗部分 99 第一節 實驗儀器與器材: 99 第二節 儀器分析與原理 100 第一項 核磁共振光譜學 100 第二項 質譜儀 100 第三項 紫外光-可見光吸收儀 101 第四項 螢光光譜儀 101 第五項 循環伏安儀 102 第六項 熱重分析 102 第七項 差示掃描量熱法 102 第三節 實驗藥品與溶劑 103 第四節 紫外光-可見光光譜之量測 105 第五節 螢光光譜之量測 106 第六節 消光係數之量測 107 第七節 螢光量子產率之量測 108 第八節 氧化還原電位之量測 111 第九節 激發態偶極矩的計算方法 113 第十節 化合物的結構、名稱、代號、分子式與分子量 115 第十一節 化合物合成流程圖 119 第十二節 化合物之合成步驟 123 第五章 參考文獻 140 附錄 150

1. 吳典霖. 新型多芳香環材料分子之合成與應用於有機發光二極體, 有機場效電晶體以及石墨烯成長之開發研究. 國立清華大學, 2015.
2. Faraday, M., On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philosophical Transactions of the Royal Society of London 1825, 115, 440-466.
3. Kaiser, R., “Bicarburet of Hydrogen”. Reappraisal of the Discovery of Benzene in 1825 with the Analytical Methods of 1968. Angewandte Chemie International Edition 1968, 7 (5), 345-350.
4. Mitscherlich, E., Ueber das Benzol und die Sauren der Oel‐und Talgarten. Annalen der Pharmacie 1834, 9 (1), 39-48.
5. Kekule, A., Sur la constitution des substances aromatiques. Bulletin mensuel de la Societe Chimique de Paris 1865, 3, 98.
6. Huckel, E., Quantentheoretische beitrage zum benzolproblem. Zeitschrift fur Physik A Hadrons and Nuclei 1931, 70 (3), 204-286.
7. Huckel, E., Quanstentheoretische beitrage zum benzolproblem. Zeitschrift fur Physik 1931, 72 (5-6), 310-337.
8. Huckel, E., Quantentheoretische Beitrage zum Problem der aromatischen und ungesattigten Verbindungen. III. Zeitschrift fur Physik 1932, 76 (9-10), 628-648.
9. Johnsen, A. R.; Wick, L. Y.; Harms, H., Principles of microbial PAH-degradation in soil. Environmental Pollution 2005, 133 (1), 71-84.
10. Brown, W.; Foote, C.; Iverson, B.; Anslyn, E., Organic Chemistry 5th Edition edition (2009) ed.; Brooks Cole Cengage Learning: 2009.
11. 侯雅馨. 合成具推拉電子基之苯乙烯吡啶分子及光物理性質研究. 國立臺灣科技大學, 2015.
12. Johnson, I. D.; Davidson, M. W. Jablonski Energy Diagram. http://www.olympusmicro.com/primer/java/jablonski/jabintro/.
13. 鄧福琳. 具分子內電荷轉移性質之苯乙烯基菲衍生物合成及光物理研究. 國立臺灣科技大學, 2013.
14. Kallmann, H.; Pope, M., Bulk conductivity in organic crystals. Nature 1960, 186, 31-33.
15. Kallmann, H.; Pope, M., Positive hole injection into organic crystals. The Journal of Chemical Physics 1960, 32 (1), 300-301.
16. Mark, P.; Helfrich, W., Space‐charge‐limited currents in organic crystals. Journal of Applied Physics 1962, 33 (1), 205-215.
17. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
18. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1987, 51 (12), 913-915.
19. Triggs, R. AMOLED vs LCD: differences explained. http://www.androidauthority.com/amoled-vs-lcd-differences-572859/.
20. Mousavi, S. H.; S.A. Jafari Mohammdi; Haratizadeh, H.; Oliveira, P. W. d., Light-Emitting Devices – Luminescence from Low-Dimensional Nanostructures. In Advances in Optical Communication, INTECH, 2014.
21. Furuta, P.; Brooks, J.; Thompson, M. E.; Frechet, J. M., Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. Journal of the American Chemical Society 2003, 125 (43), 13165-13172.
22. Bellmann, E.; Shaheen, S. E.; Thayumanavan, S.; Barlow, S.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N., New triarylamine-containing polymers as hole transport materials in organic light-emitting diodes: Effect of polymer structure and cross-linking on device characteristics. Chemistry of Materials 1998, 10 (6), 1668-1676.
23. Sato, Y.; Ichinosawa, S.; Kanai, H., Operation characteristics and degradation of organic electroluminescent devices. Selected Topics in Quantum Electronics, IEEE Journal of 1998, 4 (1), 40-48.
24. 陳金鑫; 黃孝文, OLED: 有機電激發光材料與元件. 五南圖書出版股份有限公司: 2005.
25. Lin, S.-H.; Wu, F.-I.; Liu, R.-S., Synthesis, photophysical properties and color tuning of highly fluorescent 9, 10-disubstituted-2, 3, 6, 7-tetraphenylanthracene. Chemical Communications 2009, (45), 6961-6963.
26. Bailey, D.; Williams, V. E., Complementarity in bimolecular photochromism. Chemical Communications 2005, (20), 2569-2571.
27. Um, M.-C.; Jang, J.; Hong, J.-P.; Kang, J.; Lee, S. H.; Kim, J.-J.; Hong, J.-I., Organic thin-film transistors based on 2, 6-bis (2-arylvinyl) anthracene: high-performance organic semiconductors. New Journal of Chemistry 2008, 32 (11), 2006-2010.
28. Chien, C. H.; Chen, C. K.; Hsu, F. M.; Shu, C. F.; Chou, P. T.; Lai, C. H., Multifunctional Deep‐Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups. Advanced Functional Materials 2009, 19 (4), 560-566.
29. Tamilavan, V.; Song, M.; Agneeswari, R.; Hyun, M. H., Linkage position influences of anthracene and tricyanovinyl groups on the opto-electrical and photovoltaic properties of anthracene-based organic small molecules. Tetrahedron 2014, 70 (6), 1176-1186.
30. Ionkin, A. S.; Marshall, W. J.; Fish, B. M.; Bryman, L. M.; Wang, Y., A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs. Chemical Communications 2008, (20), 2319-2321.
31. Little, M.; Lan, H.; Raftery, J.; Morrison, J. J.; McDouall, J. J.; Yeates, S. G.; Quayle, P., An Approach to the Synthesis of Functionalized Polycyclic Aromatic Hydrocarbons. European Journal of Organic Chemistry 2013, 2013 (27), 6038-6041.
32. Khorev, O.; Bosch, C. D.; Probst, M.; Haner, R., Observation of the rare chrysene excimer. Chemical Science 2014, 5 (4), 1506-1512.
33. Wu, T.-L.; Chou, H.-H.; Huang, P.-Y.; Cheng, C.-H.; Liu, R.-S., 3, 6, 9, 12-Tetrasubstituted Chrysenes: Synthesis, Photophysical Properties, and Application as Blue Fluorescent OLED. The Journal of Organic Chemistry 2013, 79 (1), 267-274.
34. Lee, S.; Kim, S.-O.; Shin, H.; Yun, H.-J.; Yang, K.; Kwon, S.-K.; Kim, J.-J.; Kim, Y.-H., Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. Journal of the American Chemical Society 2013, 135 (38), 14321-14328.
35. Ye, J.; Chen, Z.; Fung, M.-K.; Zheng, C.; Ou, X.; Zhang, X.; Yuan, Y.; Lee, C.-S., Carbazole/Sulfone Hybrid D-π-A-Structured Bipolar Fluorophores for High-Efficiency Blue-Violet Electroluminescence. Chemistry of Materials 2013, 25 (13), 2630-2637.
36. Yu, D.; Zhao, F.; Zhang, Z.; Han, C.; Xu, H.; Li, J.; Ma, D.; Yan, P., Insulated donor–π–acceptor systems based on fluorene-phosphine oxide hybrids for non-doped deep-blue electroluminescent devices. Chemical Communications 2012, 48 (49), 6157-6159.
37. Ouyang, X.; Li, X.-L.; Zhang, X.; Islam, A.; Ge, Z.; Su, S.-J., Effective management of intramolecular charge transfer to obtain from blue to violet-blue OLEDs based on a couple of phenanthrene isomers. Dyes and Pigments 2015, 122, 264-271.
38. Aloisi, G.; Elisei, F.; Latterini, L.; Mazzucato, U.; Rodgers, M., Excited state behavior of diarylethenes in the subnanosecond timescale: The role of an upper singlet. Journal of the American Chemical Society 1996, 118 (44), 10879-10887.
39. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238.
40. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics 2014, 8 (4), 326-332.
41. Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q., Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials 2015, 14 (3), 330-336.
42. Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y., Highly Efficient Near‐Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene‐Based Charge‐Transfer Compound. Angewandte Chemie International Edition 2015, 54 (44), 13068-13072.
43. Wang, S.-L.; Gao, G.-Y.; Ho, T.-I.; Yang, L.-Y., Excited-state proton transfer and excited-state de-hydrogen bonding of the push–pull styryl system. Chemical Physics Letters 2005, 415 (4), 217-222.
44. Miyaura, N.; Yamada, K.; Suzuki, A., A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Letters 1979, 20 (36), 3437-3440.
45. Miyaura, N.; Suzuki, A., Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews 1995, 95 (7), 2457-2483.
46. Suzuki, A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry 1999, 576 (1), 147-168.
47. Suzuki, A., Synthetic studies via the cross-coupling reaction of organoboron derivatives with organic halides. Pure and Applied Chemistry 1991, 63 (3), 419-422.
48. Phan, N. T.; Van Der Sluys, M.; Jones, C. W., On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings–homogeneous or heterogeneous catalysis, a critical review. Advanced Synthesis & Catalysis 2006, 348 (6), 609-679.
49. Heck, R. F.; Nolley Jr, J., Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. The Journal of Organic Chemistry 1972, 37 (14), 2320-2322.
50. Mizoroki, T.; Mori, K.; Ozaki, A., Arylation of olefin with aryl iodide catalyzed by palladium. Bulletin of the Chemical Society of Japan 1971, 44 (2), 581-581.
51. Beletskaya, I. P.; Cheprakov, A. V., The Heck reaction as a sharpening stone of palladium catalysis. Chemical Reviews 2000, 100 (8), 3009-3066.
52. Lippert, E.; Luder, W.; Moll, F.; Nagele, W.; Boos, H.; Prigge, H.; Seibold‐Blankenstein, I., Umwandlung von elektronenanregungsenergie. Angewandte Chemie 1961, 73 (21), 695-706.
53. Lippert, E.; Luder, W.; Boos, H.; Mangini, A., Advances in molecular spectroscopy. Oxford, Pergamon 1962, 443.
54. Coto, P. B.; Serrano-Andres, L.; Gustavsson, T.; Fujiwara, T.; Lim, E. C., Intramolecular charge transfer and dual fluorescence of 4-(dimethylamino) benzonitrile: ultrafast branching followed by a two-fold decay mechanism. Physical Chemistry Chemical Physics 2011, 13 (33), 15182-15188.
55. Cazeau-Dubroca, C.; Peirigua, A.; Lyazidi, S. A.; Nouchi, G., Twisted internal charge transfer fluorescence of para-N, N-dimethylaminobenzonitrile in rigid matrix at room temperature. Chemical Physics Letters 1983, 98 (5), 511-514.
56. Hynes, J. T., Twisted Intramolecular Charge Transfer Reactions: The Role of the Solvent. Journal of the Portuguese Chemical Society 1995, 2, 12-17.
57. GRABOWSKI, Z. R.; ROTKIEWICZ, K.; SIEMIARCZUK, A.; Cowley, D.; BAUMANN, W., Twisted intra-molecular charge-transfer states (tict)-new class of excited-states with a full charge separation. Nouveau Journal De Chimie-New Journal of Chemistry 1979, 3 (7), 443-454.
58. Rettig, W., Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angewandte Chemie International Edition 1986, 25 (11), 971-988.
59. Waluk, J., Conformational analysis of molecules in excited states. John Wiley & Sons: 2000; Vol. 22.
60. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews 2003, 103 (10), 3899-4032.
61. Mataga, N.; Kaifu, Y.; Koizumi, M., Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bulletin of the Chemical Society of Japan 1956, 29 (4), 465-470.
62. Lippert, E. v., Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Zeitschrift fur Elektrochemie, Berichte der Bunsengesellschaft fur physikalische Chemie 1957, 61 (8), 962-975.
63. Vazquez, M. E.; Blanco, J. B.; Imperiali, B., Photophysics and biological applications of the environment-sensitive fluorophore 6-N, N-dimethylamino-2, 3-naphthalimide. Journal of the American Chemical Society 2005, 127 (4), 1300-1306.
64. Lakowicz, J. R., Principles of fluorescence spectroscopy. Springer Science & Business Media: 2013.
65. 洪崇堯; 陳錦地. 染料敏化太陽能電池染料共軛結構對穩定度之探討. 國立交通大學, 2010.
66. Fox, M. A.; Whitesell, J., Organic Chemistry Third Edition ed.; 1994.
67. 杨贺玮; 官俊杰; 高峰贤; 何欣平; 王安; 孙宝德; 张学强; 张宝; 冯亚青, DA-π-A 结构染料敏化剂研究进展. 有机化学 2015, 35 (11), 2237-2258.
68. Huang, G. J.; Yang, J. S., The N‐Arylamino Conjugation Effect in the Photochemistry of Fluorescent Protein Chromophores and Aminostilbenes. Chemistry–An Asian Journal 2010, 5 (9), 2075-2085.
69. Cvejn, D.; Michail, E.; Seintis, K.; Klikar, M.; Pytela, O.; Mikysek, T.; Almonasy, N.; Ludwig, M.; Giannetas, V.; Fakis, M., Solvent and branching effect on the two-photon absorption properties of push–pull triphenylamine derivatives. RSC Advances 2016, 6 (16), 12819-12828.
70. Meech, S. R.; Phillips, D., Photophysics of some common fluorescence standards. Journal of photochemistry 1983, 23 (2), 193-217.
71. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report); 1365-3075; 2011; pp 2213-2228.
72. Liu, Y.; Liu, M.; Jen, A. Y., Synthesis and characterization of a novel and highly efficient light‐emitting polymer. Acta Polymerica 1999, 50 (2‐3), 105-108.

QR CODE