簡易檢索 / 詳目顯示

研究生: Panchanok Wangkiat
Panchanok Wangkiat
論文名稱: 開發 µPAD 和閉回路溫度感測器以實現用於檢測感染性疾病的環介導等溫擴增 (LAMP)
Developing µPADs and Closed Loop Thermal System to Realize Loop Mediated Isothermal Amplification (LAMP) for detecting infection diseases
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 葉怡均
Yi-Chun Yeh
陳珮珊
Pai-Shan Chen
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 94
中文關鍵詞: DNA 檢測紙基微流體 (μPAD)護理點 (POC)銅綠假單胞菌金黃色葡萄球菌環介導等溫擴增 (LAMP)
外文關鍵詞: DNA detection, microfluidic paper-based (μPADs), point-of-care (POC), Pseudomonas aeruginosa, Staphylococcus aureus, Loop-Mediated Isothermal Amplification (LAMP)
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

快速、準確地檢測病原菌對於有效的疾病診斷和管理至 關重要。 這項研究的重點是通過利用環介導等溫擴增 (LAMP) 的力量與微流體紙基分析裝置 (μPAD) 和閉環溫度傳感器相 結合,徹底改變 DNA 檢測。 具體來說,我們的目標是提高即 時護理 (POC) 設備的效率,以準確檢測兩種臨床上重要的細 菌:銅綠假單胞菌和金黃色葡萄球菌。
為了實現這一目標,μPAD 採用先進的 3D 打印技術精 心設計和製造,包含流體源、流體目的地和流體驅動通道的專 用區域。 LAMP 反應在 62°C 的恆溫下進行,由溫度傳感器、 電源、加熱板、銅板和 K 型熱電偶組成的閉環溫度控制系統 精心控制。
通過目視檢查 HNB 彩色染料促進的顏色變化來驗證擴增 結果。 陽性樣本呈現出獨特的淺藍色,而陰性樣本呈現出紫 色調。 使用 MATLAB 軟件進行的進一步定量分析證實了擴增 成功,陽性樣本的譜數約為 350-360,陰性樣本的譜數約為 170。
這種創新方法通過提供可靠、省時且用戶友好的解決方 案,為推動 DNA 檢測領域的發展帶來了巨大希望,特別是在 資源有限的環境中。 這項研究的結果有助於開發高效的 POC 設備,並在醫療保健診斷、環境監測等領域具有潛在的應用。


The rapid and precise identification of harmful bacteria is crucial for effective disease diagnosis and management. This study focuses on revolutionizing DNA detection by harnessing the power of Loop-Mediated Isothermal Amplification (LAMP) in conjunction with microfluidic paper-based analytical devices (μPADs) and closed-loop temperature sensors. Specifically, we aim to enhance the efficiency of point-of-care (POC) devices for accurately detecting two clinically significant bacteria, Pseudomonas aeruginosa and Staphylococcus aureus.
To achieve this, μPADs were meticulously designed and fabricated using advanced 3D printing technology, incorporating dedicated zones for fluid source, fluid destination, and fluid-driven channels. The LAMP process was conducted at 62°C, which was a constant temperature, meticulously controlled by a closed-loop temperature control system comprising a temperature sensor, power supply, heat plate, copper plate, and a type K thermocouple.
Validation of the amplification results was achieved through visual examination of color changes facilitated by the HNB color dye. Positive samples displayed a distinctive light blue color, while negative samples exhibited a purple hue. Further quantitative analysis using MATLAB software confirmed successful amplification, with positive samples demonstrating HSV value around 350-360 and negative samples yielding approximately 170.
This innovative approach holds immense promise for advancing the field of DNA detection, particularly in resource-limited settings, by providing a reliable, time-efficient, and user-friendly solution. The outcomes of this study contribute to the development of highly efficient POC devices with potential applications in healthcare diagnostics, environmental surveillance, and beyond.

Table of Contents 摘要 i ABSTRACT ii ACKNOWLEDGEMENT iv LIST OF TABLES viii CHAPTER1 INTRODUCTION 1 1.1 Motivation for developing a Loop mediated isothermal amplification (LAMP) with μPADs and closed loop temperature sensor for DNA detection device 1 1.1.1 Introduction of Pseudomonas aeruginosa and Staphylococcus aureus bacteria 1 1.1.2 Introduction of paper-based microfluidic devices (μPADs) 3 1.1.3 The application of paper-based microfluidic devices (μPADs) as a POC devices 8 1.2 Objective and Significance of thesis 10 1.3 Structure of thesis 12 CHAPTER2 LITERATURE REVIEW 13 2.1 Current detection method for DNA fragments 13 2.1.1 Polymerase Chain Reaction (PCR) method 13 2.1.2 Restriction Fragment Length Polymorphism (RFLP) method 15 2.1.3 Loop-mediated isothermal amplification (LAMP) method 18 2.2 The importance of temperature in the DNA amplification process 23 2.2.1 The effects of temperature in the DNA amplification process in PCR and RFLP conventional techniques 23 2.2.2 The effects of temperature in the DNA amplification process in LAMP technique 25 2.3 Paper-based microfluidic devices application in DNA detection 27 2.3.1 Paper-based microfluidic devices design and fabrication process 28 2.3.2 Paper-Based Microfluidic Devices Results Analysis Method 30 CHAPTER3 EXPERIMENT METHOD 32 3.1 Lamp solution preparation 32 3.1.1 Primer design 32 3.1.2 Solution preparation 33 3.1.3 Temperature optimization for LAMP reaction 36 3.1.4 Colorimetric Measurement Optimization 40 3.2 Paper-based microfluidic devices design and fabrication 40 3.2.1 Design of μPADs 41 3.2.2 Fabrication of μPADs 42 3.3 Thermal system design 44 3.3.1 Heat distribution simulation and analysis 44 3.3.2 Assembly of the Thermal Systems Device 47 3.3.3 Thermal distribution analysis using infrared camera (IR camera) 48 3.4 Loop-Mediated Isothermal Amplification (LAMP) on device 50 3.5 Results analysis 51 3.5.1 Image analysis 51 3.5.2 Comparison between the result from LAMP on devices and Gel electrophoresis 54 CHAPTER4 RESULT AND DISCUSSION 56 4.1 LAMP solution preparation 56 4.1.1 Primer design 56 4.1.2 Optimization of temperature for specific DNA 57 4.1.3 Optimization of colorimetric measurement for LAMP technique 60 4.2 μPAD Fabrication 62 4.3 Heat distribution simulation and analysis 63 4.4 Thermal distribution analysis on real device utilizing infrared camera 67 4.5 Loop-mediated isothermal amplification (LAMP) on heating device 75 4.6 Comparison between μPAD and gel electrophoresis technique 79 CHAPTER5 CONCLUSION, LIMITATIONS, AND RECOMMENDATIONS 81 REFERENCES 84 APPENDIX 93

REFERENCES
1) Wu, W., Jin, Y., Bai, F., & Jin, S. (2015). Pseudomonas aeruginosa. In Molecular medical microbiology (pp. 753-767). Academic Press.
2) Stefani, S., Chung, D. R., Lindsay, J. A., Friedrich, A. W., Kearns, A. M., Westh, H., & MacKenzie, F. M. (2012). Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International journal of antimicrobial agents, 39(4), 273-282.
3) David, M. Z., & Daum, R. S. (2017). Treatment of Staphylococcus aureus infections. Staphylococcus aureus: microbiology, pathology, immunology, therapy and prophylaxis, 325-383.
4) Pressler, T., Bohmova, C., Conway, S., Dumcius, S., Hjelte, L., Høiby, N., ... & Vavrova, V. (2011). Chronic Pseudomonas aeruginosa infection definition: EuroCareCF working group report. Journal of Cystic Fibrosis, 10, S75-S78.
5) Wagner, S., Sommer, R., Hinsberger, S., Lu, C., Hartmann, R. W., Empting, M., & Titz, A. (2016). Novel strategies for the treatment of Pseudomonas aeruginosa infections. Journal of medicinal chemistry, 59(13), 5929-5969.
6) Kovacs, C. S., Fatica, C., Butler, R., Gordon, S. M., & Fraser, T. G. (2016). Hospital-acquired Staphylococcus aureus primary bloodstream infection: a comparison of events that do and do not meet the central line–associated bloodstream infection definition. American Journal of Infection
Control, 44(11), 1252-1255.
7) Nishat, S., Jafry, A. T., Martinez, A. W., & Awan, F. R. (2021). based
microfluidics: Simplified fabrication and assay methods. Sensors and
Actuators B: Chemical, 336, 129681.
8) M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, “Recent
developments in paper-based microfluidic devices,” Analytical chemistry, vol.
87, no. 1, pp. 19-41, 2015
9) Y. He, W.-b. Wu, and J.-z. Fu, “Rapid fabrication of paper-based microfluidic
analytical devices with desktop stereolithography 3D printer,” Rsc Advances,
vol. 5, no. 4, pp. 2694-2701, 2015.
10) Bhardwaj, T., Ramana, L. N., & Sharma, T. K. (2022). Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. Biosensors, 12(5), 357.
11) W. Nery, and L. T. Kubota, “Sensing approaches on paper-based devices: a review,” Analytical and bioanalytical chemistry, vol. 405, no. 24, pp. 7573- 7595, 2013.
12) Azizi, M., Zaferani, M., Cheong, S. H., & Abbaspourrad, A. (2019). Pathogenic bacteria detection using RNA-based loop-mediated isothermal amplification- assisted nucleic acid amplification via droplet microfluidics. ACS Sensors, 4(4), 841–848.
13) Das, D., Masetty, M., & Priye, A. (2023). Paper-based loop mediated isothermal amplification (LAMP) platforms: Integrating the versatility of paper microfluidics with accuracy of nucleic acid amplification tests. Chemosensors, 11(3), 163.
14) Ghosh, I., Stains, C. I., Ooi, A. T., & Segal, D. J. (2006). Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Molecular BioSystems, 2(11), 551-560.
15) Chen, C. H., Lu, Y. C., Wu, C. L., & Chen, S. H. (2007). Investigation of temperature distribution on micro-CFPCR performance. Biomedical Microdevices, 10(2), 141-152.
16) Navarro, E., Serrano-Heras, G., Castaño, M. J., & Solera, J. J. C. C. A. (2015). Real-time PCR detection chemistry. Clinica chimica acta, 439, 231-250.
17) Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. Nucleic acids research, 30(6), 1292-1305.
18) Belgrader, P., Benett, W., Hadley, D., Richards, J., Stratton, P., Mariella Jr, R., & Milanovich, F. (1999). PCR detection of bacteria in seven
minutes. Science, 284(5413), 449-450.
19) Sadler, D. J., Changrani, R., Roberts, P., Chou, C. F., & Zenhausern, F. (2003). Thermal management of BioMEMS: temperature control for ceramic- based PCR and DNA detection devices. IEEE Transactions on components and packaging technologies, 26(2), 309-316.
20) Ang, G. Y., Yu, C. Y., & Yean, C. Y. (2012). Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor. Biosensors and Bioelectronics, 38(1), 151-156.
21) Ahmed, W., Simpson, S. L., Bertsch, P. M., Bibby, K., Bivins, A., Blackall, L. L., ... & Shanks, O. C. (2022). Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 805, 149877.
22) Akkaya, O., Guvenc, H. I., Yuksekkaya, S., Opus, A., Guzelant, A., Kaya,
M., ... & Kaya, N. (2017). Real-time PCR Detection of the Most Common Bacteria and Viruses Causing Meningitis. Clinical laboratory, 63(4), 827-832.
23) Hameed, S., Xie, L., & Ying, Y. (2018). Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology, 81, 61-73.
24) Yang, Y. W., Chen, M. K., Yang, B. Y., Huang, X. J., Zhang, X. R., He, L. Q., ... & Hua, Z. C. (2015). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Applied and environmental microbiology, 81(19), 6749-6756.
25) Nguyen, T. T., Trinh, K. T. L., Yoon, W. J., Lee, N. Y., & Ju, H. (2017). Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sensors and actuators B: Chemical, 242, 1-8.
26) Leber, A. L., Everhart, K., Balada-Llasat, J. M., Cullison, J., Daly, J., Holt, S., ... & Bourzac, K. M. (2016). Multicenter evaluation of BioFire FilmArray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. Journal of clinical microbiology, 54(9), 2251- 2261.
27) Ghatak, S., Muthukumaran, R. B., & Nachimuthu, S. K. (2013). A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. Journal of biomolecular techniques: JBT, 24(4), 224.
28) Akopyanz, N., Bukanov, N. O., Westblom, T. U., & Berg, D. E. (1992). PCR- based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acids Research, 20(23), 6221-6225.
29) Wolf, C., Rentsch, J., & Hübner, P. (1999). PCR− RFLP analysis of
mitochondrial DNA: A reliable method for species identification. Journal of
agricultural and food chemistry, 47(4), 1350-1355.
30) Osborn, A. M., Moore, E. R., & Timmis, K. N. (2000). An evaluation of
terminal‐restriction fragment length polymorphism (T‐RFLP) analysis for the study of microbial community structure and dynamics. Environmental microbiology, 2(1), 39-50.
31) Taylor, T. B., Patterson, C., Hale, Y., & Safranek, W. W. (1997). Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. Journal of Clinical
Microbiology, 35(1), 79-85.
32) Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and applied genetics, 80, 437-448.
33) Notomi, T., Mori, Y., Tomita, N., & Kanda, H. (2015). Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. Journal of microbiology, 53(1), 1-5.
34) Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V. L., & Morita, K. (2008). Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Reviews in medical virology, 18(6), 407-421.
35) Mori, Y., & Notomi, T. (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of infection and chemotherapy, 15(2), 62-69.
36) Njiru, Z. K. (2012). Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS neglected tropical diseases, 6(6), e1572.
37) Wong, Y. P., Othman, S., Lau, Y. L., Radu, S., & Chee, H. Y. (2018). Loop‐ mediated isothermal amplification (LAMP): a versatile technique for detection of micro‐organisms. Journal of applied microbiology, 124(3), 626-643.
38) Li, Y., Fan, P., Zhou, S., & Zhang, L. (2017). Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for
pathogens. Microbial pathogenesis, 107, 54-61.
39) Zhang, X., Lowe, S. B., & Gooding, J. J. (2014). Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosensors and Bioelectronics, 61, 491-499.
40) Atabakhsh, S., Mashayekhi, F., & Yazdi, S. (2018). Paper-based resistive heater with closed-loop temperature control for microfluidic paper-based analytical devices. Microsystem Technologies, 24(9), 3915-3924.
41) Choopara, I., Suea-Ngam, A., Teethaisong, Y., Howes, P. D., Schmelcher, M., Leelahavanichkul, A., Thunyaharn, S., Wongsawaeng, D., deMello, A. J., Dean, D., & Somboonna, N. (2021). Fluorometric paper-based, loop-mediated isothermal amplification devices for quantitative point-of-care detection of methicillin-resistant Staphylococcus aureus (MRSA). ACS Sensors, 6(3), 742– 751.
42) Kaur, N., Toley, B.J. (2023). Tuberculosis Diagnosis Using Isothermal Nucleic Acid Amplification in a Paper-and-Plastic Device. In: Myers, M.B., Schandl, C.A. (eds) Clinical Applications of Nucleic Acid Amplification. Methods in Molecular Biology, vol 2621. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2950-5_17
43) Sadler, D. J., Changrani, R., Roberts, P., Chou, C. F., & Zenhausern, F. (2003). Thermal management of BioMEMS: temperature control for ceramic- based PCR and DNA detection devices. IEEE Transactions on components and packaging technologies, 26(2), 309-316.
44) Wu, J., Kodzius, R., Cao, W., & Wen, W. (2014). Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchimica Acta, 181, 1611-1631.
45) Fiche, J. B., Buhot, A., Calemczuk, R., & Livache, T. (2007). Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves. Biophysical journal, 92(3), 935-946.
46) Gudnason, H., Dufva, M., Bang, D. D., & Wolff, A. (2007). Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting
temperature. Nucleic acids research, 35(19), e127.
47) Buschini, A., Carboni, P., Martino, A., Poli, P., & Rossi, C. (2003). Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 81-92.
48) Dhawan, A., Bajpayee, M., & Parmar, D. (2009). Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell biology and toxicology, 25, 5-32.
49) Opel, K. L., Chung, D., & McCord, B. R. (2010). A study of PCR inhibition mechanisms using real time PCR. Journal of forensic sciences, 55(1), 25-33.
50) Sipos, R., Székely, A. J., Palatinszky, M., Révész, S., Márialigeti, K., & Nikolausz, M. (2007). Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS microbiology ecology, 60(2), 341-350.
51) Francois, P., Tangomo, M., Hibbs, J., Bonetti, E. J., Boehme, C. C., Notomi, T., ... & Schrenzel, J. (2011). Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunology & Medical Microbiology, 62(1), 41-48.
52) Yeo, L. Y., Chang, H. C., Chan, P. P., & Friend, J. R. (2011). Microfluidic devices for bioapplications. small, 7(1), 12-48.
53) Erickson, D., & Li, D. (2004). Integrated microfluidic devices. Analytica chimica acta, 507(1), 11-26.
54) Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22(4), 2011.
55) Muhammad Faizul Zaki, Pin-Chuan Chen, YiChun Yeh, Ping-Heng Lin, & Ming- Yi Xu. (2022). Engineering A Monolithic 3D Paper-Based Analytical Device (μPAD) by Stereolithography 3D Printing and Sequential Digital Masks for Efficient 3D Mixing and Dopamine Detection. Sensors and Actuators A: Physical,
2022.
56) W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional
microfluidic devices fabricated in layered paper and tape,” Proceedings of the
National Academy of Sciences, vol. 105, no. 50, pp. 19606-19611, 2008.
57) Paper-based microfluidicsAn-Liang Zhang, Ya-Wei Cai, Yue Xu, & Wei-Yue
Liu. (2018). A paper-based microfluidic device with cotton thread channels based
on surface acoustic wave. Ferroelectrics, 2018.
58) Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent
developments in paper-based microfluidic devices. Analytical chemistry, 87(1),
19-41.
59) Li, X., Ballerini, D. R., & Shen, W. (2012). A perspective on paper-based
microfluidics: Current status and future trends. Biomicrofluidics, 6(1).
60) Gong, M. M., & Sinton, D. (2017). Turning the page: advancing paper-based
microfluidics for broad diagnostic application. Chemical reviews, 117(12), 8447-
8480.
61) De Oliveira Coelho, B., Sanchuki, H. B. S., Zanette, D. L., et al. (2021). Essential
properties and pitfalls of colorimetric Reverse Transcription Loop-mediated Isothermal Amplification as a point-of-care test for SARS-CoV-2 diagnosis. Molecular Medicine, 27, 30.
62) Isabella Cristina Santos Egito, Angelica Rodrigues Alves, Ian Carlos Bispo Carvalho, Luciellen Costa Ferreira, et al. (2023). Specific colorimetric LAMP assay for the detection of maize bushy stunt phytoplasma in corn through comparative genomics. Research Square Platform LLC, 2023
63) Naji, E., Fadajan, Z., Afshar, D., & Fazeli, M. (2020). Comparison of reverse transcription loop-mediated isothermal amplification method with SYBR Green real-time RT-PCR and direct fluorescent antibody test for diagnosis of rabies. Japanese Journal of Infectious Diseases, 73, 19–25.
64) Sun, L., Jiang, Y., Pan, R., Li, M., Wang, R., Chen, S., Fu, S., & Man, C. (2018).
A novel, simple and low-cost paper-based analytical device for colorimetric detection of Cronobacter spp. Analytica Chimica Acta, 1036, 80–88.
65) Zhang, Y., Ren, G., Buss, J., Barry, A. J., Patton, G. C., & Tanner, N. A. (2020). Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. Biotechniques, 69(3), 178-185.
66) Nguyen, D. V., Nguyen, V. H., & Seo, T. S. (2019). Quantification of colorimetric loop-mediated isothermal amplification process. BioChip Journal, 13, 158-164.
67) Aoki, M. N., de Oliveira Coelho, B., Góes, L. G. B., Minoprio, P., Durigon, E. L., Morello, L. G., Marchini, F. K., Riediger, I. N., do Carmo Debur, M., Nakaya, H. I., & Blanes, L. (2021). Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Scientific Reports, 11(1), 9026.
68) Kato, H., Yoshida, A., Ansai, T., Watari, H., Notomi, T., & Takehara, T. (2007). Loop-mediated isothermal amplification method for the rapid detection of Enterococcus faecalis in infected root canals. Oral microbiology and immunology, 22(2), 131–135. https://doi.org/10.1111/j.1399- 302X.2007.00328.x
69) Seok, Y., Joung, H. A., Byun, J. Y., Jeon, H. S., Shin, S. J., Kim, S., ... & Kim, M. G. (2017). A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA
targets. Theranostics, 7(8), 2220.
70) Kaarj, K., Akarapipad, P., & Yoon, J. Y. (2018). Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Scientific reports, 8(1), 12438.
71) Zhang, H., Xu, Y., Fohlerova, Z., Chang, H., Iliescu, C., & Neuzil, P. (2019). LAMP-on-a-chip: Revising microfluidic platforms for loop-mediated DNA amplification. TrAC Trends in Analytical Chemistry, 113, 44-53.
72) Muhammad Faizul Zaki, Yi-Xin Wu, Pin-Chuan Chen, & Pai-Shan Chen. (2023).
Determination of Psychoactive Substances in One Microliter Plasma Using a Novel 3D Printing Microfluidic Paper-based Column Coupled to Liquid Chromatography-Mass Spectrometry. Sensors and Actuators B: Chemical, 2023.
73) Yılmaz, M., Ozic, C., & Gok, İ. (2012). Principles of nucleic acid separation by agarose gel electrophoresis. Gel Electrophoresis–Principles and Basics, 4, 33.

QR CODE