簡易檢索 / 詳目顯示

研究生: 陳致仰
Chih-Yang Chen
論文名稱: 飛灰含量對無水泥生態混凝土耐久性質之效應
Effects of Fly Ash Contents on Durability Properties of No-Cement Eco-Binder Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 施正元
Jeng-Ywan Shih
葉為忠
wei-jhong Ye
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 116
中文關鍵詞: CFBC灰飛灰水淬爐石粉耐久性無水泥膠結材
外文關鍵詞: CFBC ash, slag, fly ash, durability, no-cement binder
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無水泥生態混凝土膠結材由循環式流化床燃燒(circulating fluidized bed combustion_CFBC)飛灰、水淬爐石粉與F級飛灰等三種粉體材料所組成,本研究探討F級飛灰含量變化對無水泥生態混凝土耐久性質之效應,CFBC飛灰成分含無水石膏與生石灰,與水反應後產生鈣礬石和C-S-H膠體,提供混凝土強度,但含量過多也會產生膨脹,造成混凝土體積不穩定,降低混凝土耐久性,本研究固定水膠比(w/cm) 0.3,以五種比例飛灰添加量(0%、10%、20%、30%、50%),以及兩種比例CFBC灰(15%、25%)作為變數取代水淬爐石粉製作混凝土,研究混凝土新拌、硬固、耐久等工程性質,觀察添加不同含量飛灰所產生之效應。
研究結果顯示:(1)新拌性質:飛灰取代量由0%至20%時,坍度及坍流度上升1.85%~3.7%及2.8%~22.4%;增加至30%與50%時,坍度及坍流度下降8%~10.2%及27.4%~28.9%。故工作性最佳之飛灰添加量為10%~20%。(2)硬固性質:固定15%CFBC灰含量下,隨飛灰取代量由0%增加至50%, 28天及56天抗壓強度降低7.04%~4.77%。飛灰取代量0%~30%, 28天及56天超音波波速降低0.3%~1.34%。飛灰添加量至50%時,較0%超音波波速低0.01%,在28天及56天齡期,隨飛灰取代量由0%增加50%,熱傳導係數增加20.1%及10.7%。(3)耐久性質:快速氯離子試驗,56天齡期,飛灰添加10%與20%時,通過電荷量下降34.3%與31.4%,當添加至30%與50%時通過電荷量增加42%與169%。固定15%CFBC灰含量,隨飛灰取代量0%~50%,28天及56天表面電阻值增加17.2%與3.52% 。隨著飛灰添加量增加,加壓48及72小時,深度增加282.6%~200%。 在56天齡期,由數據可看出腐蝕量最低與次低兩組配比為(a) CFBC灰取代25%與 (b)CFBC灰取代15%及飛灰取代20%,分別為OPC腐蝕量之8.4%及11.9%。


The cementitious material of the No-Cement Eco-Binder Concrete is composed of three powders, circulating fluidized bed combustion (CFBC) fly ash, ground granulate blast furnace (GGBF) slag and Class F fly ash. This research addressed the effects of various amounts of Class F fly ashes on the durability property of such concrete. The compositions of CFBC ash, anhydrous gypsum and lime, react with water to produce ettringite (Aft) and calcium silicate hydrate (C-S-H) gel to provide the concrete strength, but excessive amount will produce expansion resulting in unstable concrete volume and the reduction of the durability of concrete. This study used a fixed water-cementitious material (w/cm) ratio of 0.3, and five proportions of fly ash with (0%, 10%, 20%, 30%, 50%), and two proportions of CFBC ash (15%, 25%) to replace the slag powder to make the concrete, from which the engineering properties of fresh, hardened, and durability were studied to investigate the resulting effects due to the addition of various amounts of fly ash.
The results of study show that: (1) Fresh properties. When the amount of replacement of fly ash increases from 0 to 20%, the values of slump and slump flow increase by the ranges from 1.85% to 3.7% and from 2.8% to 22.4%. When the replacement ratio increases to 30% and 50%, the values of slump and slump flow decrease by the ranges from 8% to 10.2% and from 27.4% to 28.9%. The optimal value of fly ash replacement to have good workability is from 10% to 20%. (2) Engineering properties. At fixed amount of 15% of CFBC ash together with the increase of fly ash from 0% to 50%, the compressive strengths of 28 days and 56 days reduced by 7.04% to 4.77%. When the replacement amount of fly ash from 0% to 30%, the ultrasonic pulse velocities of 28 days and 56 days decreased by 0.3% to 1.34%. The ultrasonic pulse velocity with 50% of fly ash lower was lower than that of 0% by 0.01%. The coefficient of thermal conductivities at 28 days and 56 days increased by 20.1% and 10.7% when the increase of fly ash from 0% to 50%. (3) Durability properties. The rapid chloride tests result show that, at age of 56 days with 10% and 20% of fly ash additions, the amount of charge decreased by 34.3% and 31.4%, respectively. When the addition of fly ash increased to 30% and 50%, the amount of charge increased by 42 % and 169%, respectively. At the fixed amount of 15% of CFBC ash with the amount of fly ash replacement from 0% to 50%, the amount of electrical resistivity of 28 days and 56 days increased by 3.52% and 17.2%. When the amount of fly ash increased and under curing pressure for 48 and 72 hours, the carbonation depth increased by 200%~282.6%. Two mixtures with the lowest and second lowest corrosions were (a) 25% replacement of CFBC ash and (b) 15% replacement of CFBC ash and 20% replacement of fly ash, respectively, having the values of only 8.4% and 11.9% of those of the OPC.

摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 1 1-3 研究項目與流程 2 第二章 文獻回顧 4 2-1循環式流化床鍋爐技術 4 2-1-1循環式流化床鍋爐技術介紹 4 2-1-2循環式流體化床鍋爐技術原理 4 2-2 CFBC灰之種類 5 2-3 CFBC灰反應機理 6 2-3-1 CFBC灰自膠凝反應機理 6 2-3-2 CFBC灰作為鹼激發(活化)劑 7 2-4 CFBC灰對於混凝土影響之相關研究 7 2-4-1對於混凝土工作性質之影響 8 2-4-2對於混凝土硬固之影響 8 2-4-3對於混凝土耐久性之影響 11 2-5各種水化物生成對於體積穩定性之影響 12 2-6 混凝土中性化 13 2-6-1混凝土碳化之加速方式 13 2-6-2混凝土碳化之機理 13 2-6-2混凝土碳化速率及碳化深度 14 2-7 CFBC灰與水淬爐石粉之影響[35-38] 14 第三章 實驗計畫 24 3-1 試驗內容與流程 24 3-2 試驗材料 24 3-3 試驗設備 26 3-4試驗變數及項目 29 3-4-1試驗內容說明 29 3-4-2試體編號及項目說明 30 3-5試體拌合與製作 30 3-6 試驗方法 31 3-6-1材料基本性質試驗 31 3-6-2新拌性質試驗 32 3-6-3工程性質試驗 32 3-6-4耐久性質試驗 36 第四章 試驗結果與討論 66 4-1新拌性質 66 4-1-1 坍流度試驗 66 4-2工程性質 67 4-2-1抗壓強度試驗 67 4-2-2超音波波速試驗 68 4-2-3動態彈性與動態剪力模數試驗 70 4-2-4長度變化量試驗 71 4-2-5熱傳導係數 72 4-3耐久性試驗 72 4-3-1快速氯離子滲透試驗 72 4-3-2表面電阻 73 4-3-3碳化深度量測 74 4-3-4鋼筋腐蝕量測 75 第五章 結論與建議 95 5-1 結論 95 5-2 建議 97 參考文獻 98

1. Sheng, G., Q. Li, J. Zhai, and F. Li, “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, Vol.37(6), pp.871-876 (2007).
2. 岳煥玲、原永濤、朱洪峰,「循環流化床鍋爐灰渣綜合利用」,鍋爐技術(Boiler Technology),第37卷,第z1期,第36-41頁(2006)。
3. 錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁(2006)。
4. 台塑石化公司,「副產品「混合石膏及副產飛灰」再利用技術及應用推廣規範評估報告」(2005)。
5. Sheng, G., J. Zhai, Q. Li, F. Li, “Utilization of Fly Ash coming from a CFBC Boiler Co-Firing Coal and Petroleum Coke in Portland Cement,” Fuel, Vol.86(16), pp. 2625-2631 (2007).
6. Anthony, J., L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol. 84, pp. 1393-1397 (2005).
7. 台塑石化股份有限公司,「台塑副產石灰推廣簡介」(2010)。
8. Lee, C. Y., H. K. Lee, and K. M. Lee, “Strength and Microstructural Characteristics of Chemically Activated Fly Ash–Cement Systems,” Cement and Concrete Research, Vol. 33(3), pp. 425-431 (2003).
9. Sheng, G., Q. Li, J. Zhai, “Investigation on the hydration of CFBC fly ash,” Fuel, 98, pp61-66 (2012).
10. Havlica, J., I. Odler, J. Brandštetr, R. Mikulikova, and D. Walther, “Cementitious materials based on fluidised bed coal combustion ashes,” Advances in Cement Research,Vol.16(2), pp. 61-67 (2010)
11. Anthony, J., L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol.84, pp. 1393-1397 (2005).
12. Shi, C., P. V. Krivenko, and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor and Francis (2006).
13. Davidovits, J., “Geoplolymer:man-made rock gel synthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91-139 (1994).
14. Fu, X., Q. Li, J. Zhai, “The physical–chemical characterization of mechanically-treated CFBC fly ash,” Cement & Concrete Composites, Vol.30(3), pp. 220-226 (2008).
15. 宋遠明、錢覺時、劉景相、王波、王志娟,「SO3對固硫渣膠凝系統水化及性能的影響」,建築材料學報,第16期,第4期,第688-694頁(2013)。
16. Hsu, H. M., A. Cheng, S. J. Chao, “Peuse the bed ash from circulating from fluidized bed combustion on mortar mixture,” Marine Science and Technology, vol. 18(4), pp. 620-628 (2010).
17. 田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第17卷,第6期,第49-53頁(2003)。
18. Li, X. G., Q. B. Chen, B. G. Ma, J. Huang, S. W. J, and B. Wu, “Utilization of modified CFBC desulfurization ash as an admixture in blende cements: Physico-mechanical and hydration characteristics,” Fuel, Vol. 102, pp. 674-680 (2012).
19. Xia, Y., Y. Yan, “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics,”Construction and Materials, Vol. 47, pp. 1461-1467(2013).
20. 盛廣宏、陳明、程麟、方恆林,「硬石膏對硅酸鹽水泥性的影響」,水泥工程,第5期,第8~11頁(2004)。
21. Sievert, T., A. Wolter, N. B. Singh, “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill,” Cement and Concrete Research,” Vol. 35, pp. 623-630 (2005).
22. 夏艷晴、嚴雲、胡志華,「固流化免蒸壓加氣混凝土性能影響因素的研究」,武漢理工大學學報,第34卷,第3期,第25~30頁(2012)。
23. 張峻闔,碩士論文,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木研究所 (2013)。
24. 黃兆龍,「混凝土性質與行為」,詹氏書局(2002)。
25. 黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社(2007)。
26. 趙文成、黃然、李釗、張大鵬,「混合水泥摻用未水化CFBC灰(副產時灰)使用手冊」,國立交通大學、國立台灣海洋大學、國立中央大學、國立台灣科技大學四校研究團隊(2013)。
27. 卓世偉、劉娟娟、翁詩涵,「以 ASTM C1202 評估混凝土耐久性之探討」,中華技術學院學報,第26期,(2003)。
28. Yang, C. C., S. W. Cho, R. Huang, “An electrochemical method for accelerated chloride migration test in cement-based materials”, Materials Chemistry and Physics, Vol.77 (2), pp. 461-469 (2002).
29. Feldman, R., L. R. Prudencio, G. Chan, “Rapid chloride permeability test on blend cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Buliding Materials, Vol. 13, pp. 149-154 (1999).
30. Wee, T. H., A. K. Suryavanshi, S. S. Tin, “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability”, Cement and Concrete Composites, Vol. 21, pp. 59-72 (1999).
31. 江慶堂,博士論文,「混凝土快速氯離子穿透試驗之導電活化能」,國立台灣海洋大學河海工程所(2009)。
32. CNS 14795 ,「混凝土抗氯離子穿透能力試驗法」,經濟部中央標準局(2011)。
33. Maries, A., “The activation of Portland cement by carbon dioxide. Proceeding of Conference”, Cement and Concrete Science, pp.203-228, Oxford, UK, 1985.
34. 陳君弢,混凝土中性化行為學及其影響之研究,國立臺灣海洋大學海河工程學系,碩士論文,基隆,1999。
35. Chen, C. T.,“Performance and microstructural examination on composition of hardened paste with no-cement SFC binder,”National Taiwan University of Science and Techonology Dept civil and construction engineering (2014).
36. Nguyen, H. A.,“Sulfate resistance of low energy SFC no-cement mortar,”National Taiwan University of Science and Techonology Dept civil and construction engineering (2015).
37. Nguyen, H. A.,“Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder,”National Taiwan University of Science and Techonology Dept civil and construction engineering (2015).
38. Nguyen, T. D.,“Engineering properties and microstructural examination of cementitious materials with SCA ECO-binder,”National Taiwan University of Science and Techonology Dept civil and construction engineering (2014).

QR CODE