簡易檢索 / 詳目顯示

研究生: 陳氏清玉
TRAN - THI THANH NGOC
論文名稱: 以新穎方式合成奈米金與其在生物領域上之應用
Novel Synthesis of Gold Nanoparticles for Bio-applications
指導教授: 戴龑
Yian Tai
口試委員: 何明樺
Ming-Hua Ho
翁一鳴
Yat-Ming Yung
王子豪
Tzu-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 奈米金粒子環保製程生物領域之應用
外文關鍵詞: gold nanoparticles, green synthesis, bio-applications
相關次數: 點閱:237下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兼具環保以及成本效益的方式來合成奈米粒子已成為綠色化學中研究的趨勢。本研究中,用新穎且簡單的程序利用不同的還原劑跟安定劑例如水果萃取物、甲氨蝶呤 (Methotrexate) 和馮 (Rev peptide) 來控制金奈米粒子的大小和形狀,例如:圓形、三角形和多邊形,並可應用於生化研究上。
     藉由UV/VIS吸收光譜、TEM、XRD、及SERS分析所合成出來的奈米金粒子。並由FTIR和XPS的量測奈米金粒子外的穩定劑如水果萃取物、甲氨蝶呤和馮。甲氨蝶呤或馮接合上奈米金粒子的定量分析則由UV/VIS和PL校正曲線來量測。
     經由溶血試驗可證實利用水果萃取物可合成具有生物相容性的奈米金粒子。此外,將使用甲氨蝶呤和馮所合成的奈米金粒子分別在人類絨毛膜癌細胞JAR和小鼠卵巢MOSEC上進行LDH和MTT assays檢測,初步結果顯示其抗癌性有增強之效果。


    Eco-friendly and cost-effective synthesis of nanoparticles is of interest due to the tendency of development of green chemistry. In this research, a simple procedure to generate gold nanoparticles for bio-applications with various sizes and shapes, such as spherical, triangular plates and polygons were reported, by using different sources as reducing and stabilizing agents including fruit extracts, Methotrexate, and Rev peptide.
    The obtained nanoparticles were characterized by UV-Visible, TEM, and XRD . FTIR and XPS measurements were also carried out . The amount of methotrexate or Rev peptide binded on AuNPs were quantified using UV-Visible or PL calibration curves.
    Raman spectroscopy has been performed to proof that the nanoparticles could result in the surface enhancement (SERS) effects.
    Finally, the nontoxicity and high biocompatibility of AuNPs obtained using fruit extracts were demonstrated through hemolysis test. In addition, the improved cytotoxic effect of AuNPs generated by using methotrexate and Rev peptide on human choriocarcinoma JAR and mouse ovarian surface epithelial MOSEC cell lines, respectively, were investigated by LDH and MTT assays.

    CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 Gold nanoparticles 3 2.1.1 Synthesis 3 2.1.1.1 Citrate reduction 3 2.1.1.2 The Brust-Schiffrin biphasic method 4 2.1.1.3 Shape-controlled synthesis 5 2.1.1.4 Biosynthesis 8 2.1.2 Gold nanoparticles in biosensing 11 2.1.2.1 The surface plasmon resonance (SPR) of AuNPs 12 2.1.2.2 Fluorescence quenching 12 2.1.2.3 Surface-enhanced Raman scattering 13 2.1.3 Gold nanoparticles in delivery applications 14 2.1.4 Gold nanoparticles in therapy 16 2.1.5 Cytotoxicity 17 2.2 Methotrexate 18 2.3 Rev peptide 19 CHAPTER 3 EXPERIMENTAL 21 3.1 Materials 21 3.2 Equipments and instruments 23 3.3 Experimental procedures 24 3.3.1 Preparing the fruit extracts 24 3.3.2 Synthesis of AuNPs using fruit extracts 25 3.3.2.1 Orange extract 26 3.3.2.2 Papaya extract 26 3.3.2.3 Carrot extract 26 3.3.2.4 Guava extract 27 3.3.2.5 Peach extract 27 3.3.3 Synthesis of AuNPs using methotrexate 28 3.3.4 Synthesis of AuNPs using Rev peptide 29 3.4 Analytical procedures 30 3.4.1 pH measurement 30 3.4.2 UV-VIS analysis 30 3.4.3 Photoluminescence analysis 30 3.4.4 Transmission electron microscopy analysis 30 3.4.5 Surface-enhanced raman scattering analysis 31 3.4.6 Fourier transform infrared spectroscopy analysis 31 3.4.7 X-ray diffraction analysis 31 3.4.8 X-ray photoelectron spectroscopy analysis 31 CHAPTER 4 RESULTS AND DISCUSSION 32 4.1 Synthesizing AuNPs by using fruit extracts 32 4.1.1 Orange extract 32 4.1.2 Papaya extract 37 4.1.3 Carrot extract 42 4.1.4 Guava extract 47 4.1.5 Peach extract 52 4.1.6 SERS 57 4.1.7 Toxicity test 59 4.2 Synthesizing Au-MTX conjugate 61 4.2.1 Characterization 61 4.2.2 Quantification 72 4.2.3 In vitro test 75 4.3 Synthesizing Au-Rev conjugate 79 4.3.1 Characterization 79 4.3.2 Quantification 91 4.3.3 In vitro test 94 CHAPTER 5 CONCLUSION AND SUGGESTION 99 5.1 Conclusion 99 5.2 Suggestion and futrure work 100 REFERENCES 101

    1. Husseiny M.I. et al., Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 2007, 67, 1003-6.
    2. Gericke M., Pinches A., Gold Bull, 2006, 39, 22-28.
    3. Mukherjee P. et al, Angew Chem Int Ed, 2001, 40, 3585-3588.
    4. Mukherjee P. et al., Chem. Bio. Chem., 2002, 3, 461-463.
    5. Shankar S.S. et al., J. Mater. Chem., 2003, 13, 1822-1826.
    6. Armendariz V. et al., J. Nanoparticle Res., 2004, 6, 377-382.
    7. Ankamwar B., Chaudhary M., Mural S., Synth. React. Inorg. Metal – Org. Nanometal Chem., 2005, 35, 19-26.
    8. Chandran S.P. et al., Biotechnol. Prog., 2006, 22, 577-583.
    9. Huang J. et al., Nanotechnology, 2007, 18, 105104-105114.
    10. Ghodake G.S., Deshpande N.G., Lee Y.P., Jin E.S., Colloids Surf B Biointerf, 2010, 75, 584-589.
    11. Sharma J., Tai Y., Imae T., Chem. Asian J., 2010, 5, 70-73.
    12. Si S., Mandal T.K., Chem. Eur. J., 2007, 13, 3160-3168.
    13. Palui G., Ray S., Banerjee A., J. Mater. Chem., 2009, 19, 3457-3468.
    14. Faraday M., Philos. Trans. R. Soc. London, 1857, 147, 145-181.
    15. Daniel M.C, Astruc D., Chem. Rev., 2004, 104, 293-346.
    16. Turkevitch J. et al., Discuss. Faraday Soc., 1951, 11, 55-75.
    17. Yonezawa T., Kunitake T., Colloids Sufr. A: Physicochem. Eng. Asp, 1999, 149, 193-199.
    18. Giersig M., Mulvaney P., Langmuir, 1993, 9, 3408-3413.
    19. Brust M. et al., J. Chem. Soc., Chem. Commun., 1994, 801-802.
    20. Xia Y. et al., Angew. Chem. Int. Ed., 2009, 48, 60-103.
    21. Kamilo M., Suzuki T., Kawai K., Bio Ind. (Japan), 1991, 16, 36-42.
    22. Beveridge T.J., Murray R.G.E., J. Bacteriol., 1976, 127, 1502-1518.
    23. Nair B., Pradeep T., Crystal Growth Design, 2002, 4, 295-298.
    24. Lengke M., Fleet M.E., Southam G., Langmuir, 2006, 22, 1780-2787.
    25. Kalishwaralal K. et al., Colloids Surf B Biointerf, 2010, 77(2), 257-262.
    26. Sastry M., Ahmad A., Khan M.I., Kumar R., Curr Sci, 2003, 85, 162-170.
    27. Ahmad A. et al., Nanotechnology, 2003, 14, 824-828.
    28. Lin Z., Wu J., Xue R., Yang Y., Spectrochimica Acta Part A, 2005, 61, 761-5.
    29. Gericke M., Pinches A., Hydrometallurgy, 2006, 83, 132-140.
    30. Agnihotri M. et al., Mat Lett, 2009, 63, 1231-1234.
    31. Ahmad A. et al., J Biomed Nanotechnol, 2005, 1, 47-53.
    32. Philip D., Spectrochim Acta Part A, 2009, 73, 374-381.
    33. Shankar S. et al., Nat Mater, 2004, 3, 482-488.
    34. Singaravelu G. et al., Colloids Surf B Biointerf, 2007, 57, 97-101.
    35. Sperling R.A. et al., Chem. Soc. Rev., 2008, 37, 1896-1908.
    36. Mie G., Ann. Phys., 1908, 25, 377–445.
    37. Jain P.K., Eustis S., El-Sayed M.A., J. Phys. Chem. B, 2006, 110, 18243-53.
    38. Nam J.M., Stoeva S.I., C.A.Mirkin, J. Am. Chem. Soc., 2004, 126, 5932-33.
    39. Demers L.M. et al., Anal. Chem., 2000, 72, 5535-5541.
    40. Kneipp K., Kneipp H., Kneipp J., Acc. Chem. Res., 2006, 39, 443-450.
    41. Cao Y.C., Jin R., Mirkin C.A., Science, 2002, 297, 1536-1540.
    42. Qian X. et al., Nat. Biotechnol., 2008, 26, 83.
    43. Ghosh P. et al., Adv. Drug Deliver. Rev., 2008, 60, 1307-1315.
    44. Hong R. et al., J. Am. Chem. Soc., 2006, 128, 1078-1079.
    45. Han G. et al., Bioconjug. Chem., 2005, 16, 1356-1359.
    46. Sandhu K.K. et al., Bioconjug. Chem., 2002, 13, 3-6.
    47. Oishi M., Nakaogami J., Ishii T., Nagasaki Y., Chem. Lett., 2006, 35, 1046-7.
    48. Verma A. et al., J. Am. Chem. Soc, 2004, 126, 13987-13991.
    49. Bhumkar D.R., Joshi H.M., Sastry M., Pokharkar V.B., Pharm. Res., 2007, 24, 1415-1426.
    50. Brigger I., Dubernet C., Couvreur P., Adv. Drug Deliver Rev., 2002, 54, 631-651.
    51. Zharov V.P., Galitovskaya E.N., Johnson C., Kelly T., Lasers Surg. Med., 2005, 37, 219–226.
    52. Loo C. et al., Nano Lett., 2005, 5, 709–711.
    53. Stern J.M. and Cadeddu J.A., Urol. Oncol., 2008, 26, 93–96.
    54. Cardinal J. et al., Surgery, 2008, 144, 125–132.
    55. Bhattacharya R., Mukherjee P., Adv. Drug Deliver Rev., 2008, 60, 1289–1306.
    56. Chamberland D.L. et al., Nanotechnology, 2008, 19, 95-101.
    57. Zharov V.P. et al., Biophys. J., 2006, 90, 619–627.
    58. Boisselier E., Astruc D., Chem. Soc. Rev., 2009, 38, 1759-1782.
    59. Connor E. et al., Small, 2005, 21, 325–327.
    60. Pernodet N. et al., Small, 2006, 6, 766-773.
    61. Gref R. et al., Biomaterials, 2003, 24, 4529–4537.
    62. Douglas S., Davies S., Illum L., CRC Crit. Rev. Ther. Drug Carrier Syst., 1986, 3, 233–261.
    63. Paciotti G. F. et al., Int. J. Cancer, 2007, 120, 2474–2480.
    64. Vezmar S., Becker A., Bode U., Jaehde U., Chemotherapy, 2003, 49, 92-104.
    65. Narayani R., Rao K.P., J. Microencapulation, 1994, 11, 69-77.
    66. Hung C.T., McLeod A.D., Gupta P.K., Drug Dev. Ind. Pharm., 1990, 16, 509-521.
    67. Kohler N. et al., Small, 2006, 2, 785-792.
    68. Wosikowski K. et al., Clin. Cancer Res., 2003, 9, 1917-1926.
    69. Chen Y.H. et al., Mol. Pharmaceutics, 2007, 4, 713-722.
    70. Szebeni A., Herrera J.E., Olson O.J., Biochemistry, 1995, 34, 8037-8042.
    71. Chan H.J., Weng J.J., Yung B.Y.M., BBRC, 2005, 333, 396-403.
    72. Millstone J.E. et al., Nano Lett., 2008, 8, 2526-2529.
    73. Rai A., Singh A., Ahmad A., Sastry M., Langmuir, 2006, 22, 736-741.
    74. Slocik J.M., Stone M.O. and Naik R.R., Small, 2005, 1, 1048-1052.
    75. Sharma J., Tai Y., Imae T., J. Phys. Chem. C, 2008, 112, 17033-17037.
    76. Philip D., Physica E, 2010, 42, 1417-1424.

    QR CODE