簡易檢索 / 詳目顯示

研究生: 葉俊緯
Jun-Wei Ye
論文名稱: 使用視覺刺激的方式來探討fMRS在3T磁振造影系統下的可行性
Feasibility of fMRS using visual stimulation at 3T MR system
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
Teng-Yi Huang
劉益瑞
Yi-Jui Liu
林益如
Yi-Ru Lin
蔡尚岳
Shang-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 36
中文關鍵詞: 功能性磁共振頻譜3T儀器視覺刺激初級視覺區
外文關鍵詞: fMRS, 3T system, visual stimulation, primary visual cortex
相關次數: 點閱:328下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁共振頻譜 (MRS)提供一種非侵入性的技術來觀測大腦內存在哪些代謝物以及這些代謝物濃度的多寡是否正常,藉由了解這些訊息來幫助診斷病因。功能性磁共振頻譜 (fMRS)則是透過讓大腦接受外在刺激後,觀察特定腦區進行神經活動時的代謝物濃度變化。有幾篇關於腦部視覺皮質區的fMRS研究指出,在7T磁場強度的MRI儀器下,讓大腦接受視覺刺激可以觀察到代謝物濃度有顯著的改變,尤其是谷氨酸(Glutamate)、乳酸(Lactate),變化量達到2%以及17%。本研究目的在3T磁場強度下,觀察大腦視覺區在接受到視覺刺激時代謝物的濃度變化,藉此探討fMRS在3T的可行性。此研究的視覺刺激包含3次黑底白十字的圖片以及2次棋盤格閃爍,VOI擺放在初級視覺區 (Primary visual cortex,VC1),總共視覺刺激時間約為10分鐘。初步的分析顯示,視覺區的血氧濃度相依對比 (Blood-oxygen-level dependent, BOLD)有明顯變化,但是代謝物的濃度在接受視覺刺激時沒有發現顯著的變化。此現象可能與VOI的擺放位置有關,如果能夠更精確地得知有反應的區域,fMRS在3T仍有機會可以觀察到代謝物濃度變化。


    Functional magnetic resonance spectroscopy has been used to observe brain metabolism during physical stimulation in a non-invasive way. Recent researches have indicated that metabolic concentration changed during visual and motor stimuli using fMRS at 7T system. These studies also showed that glutamate (Glu) and lactate (Lac) have been found to increase by 2% and 17% during stimuli using block design in experiments. The main purpose is to find out the potential of fMRS at 3T system by observing the metabolic change during visual stimulation. Three blocks of black background image and two blocks of flashing checkerboard were interleaved as stimuli material and voxel was located at primary visual cortex. The total fMRS experiment time was about 10 minutes. Our preliminary results showed that concentration of metabolites did not have significant change. But BOLD contrast changed during activation periods. This phenomenon might be related to the placement of VOI. It is possible to observe the metabolic change using fMRS at 3T system if the VOI can be positioned more precisely according to really reactive area.

    Abstract 摘要 List of Contents List of figures List of Tables Chapter1. Introduction 1.1 Functional MRS 1.2 Metabolites 1.3 Literature review 1.4 Motivation Chapter2. Materials and Methdod 2.1 Participants 2.2 Activation paradigm 2.3 Data acquisition 2.4 Data analysis Chapter3. Results Chpater4. Discussion Chpater5. References

    [1] S. Mangia, I. Tkáč, R. Gruetter, P.-F. Van de Moortele, B. Maraviglia, and K. Uğurbil, "Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex," Journal of Cerebral Blood Flow & Metabolism, vol. 27, no. 5, pp. 1055-1063, 2007.
    [2] Y. Lin, M. C. Stephenson, L. Xin, A. Napolitano, and P. G. Morris, "Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T," Journal of cerebral blood flow & metabolism, vol. 32, no. 8, pp. 1484-1495, 2012.
    [3] B. Schaller, L. Xin, K. O'brien, A. W. Magill, and R. Gruetter, "Are glutamate and lactate increases ubiquitous to physiological activation? A 1H functional MR spectroscopy study during motor activation in human brain at 7 Tesla," Neuroimage, vol. 93, pp. 138-145, 2014.
    [4] 林家任, "在3T磁場強度下使用功能性磁振頻譜觀察看影片時大腦代謝物濃度變化," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2017.
    [5] N. Tzourio-Mazoyer et al., "Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain," Neuroimage, vol. 15, no. 1, pp. 273-289, 2002.
    [6] J. Kauttonen, Y. Hlushchuk, and P. Tikka, "Optimizing methods for linking cinematic features to fMRI data," Neuroimage, vol. 110, pp. 136-148, 2015.
    [7] U. Hasson, O. Furman, D. Clark, Y. Dudai, and L. Davachi, "Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding," Neuron, vol. 57, no. 3, pp. 452-462, 2008.
    [8] J. M. Lahnakoski et al., "Synchronous brain activity across individuals underlies shared psychological perspectives," NeuroImage, vol. 100, pp. 316-324, 2014.
    [9] B. C. Rowland, H. Liao, F. Adan, L. Mariano, J. Irvine, and A. P. Lin, "Correcting for frequency drift in clinical brain MR spectroscopy," Journal of Neuroimaging, vol. 27, no. 1, pp. 23-28, 2017.
    [10] S. W. Provencher, "LCModel & LCMgui user’s manual," LCModel Version, pp. 6.2-3, 2014.
    [11] C. Gasparovic et al., "Use of tissue water as a concentration reference for proton spectroscopic imaging," Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 55, no. 6, pp. 1219-1226, 2006.
    [12] Y. Lu, D. Wu, and V. A. Magnotta, "Partial volume correction of magnetic resonance spectroscopic imaging," in Medical Imaging 2007: Image Processing, 2007, vol. 6512, p. 651243: International Society for Optics and Photonics.
    [13] A. John et al., "Spm8 manual," Functional Imaging Laboratory, Institute of Neurology, p. 41, 2008.
    [14] R. Kreis, "The trouble with quality filtering based on relative C ramér‐R ao lower bounds," Magnetic resonance in medicine, vol. 75, no. 1, pp. 15-18, 2016.

    QR CODE