簡易檢索 / 詳目顯示

研究生: 卡蒂克
Kadek - Yulia Kesuma Wardhani Sumpena
論文名稱: 鋅紫質(IX)對胺類氣體感測行為之研究
A Study on the Gas Sensing Properties of Protoporphyrin Zinc IX towards Amines
指導教授: 劉進興
Chin-Hsin Liu
口試委員: 江志強
Jyh-Chiang Jiang
施正雄
Jeng-Shong Shih
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 147
中文關鍵詞: 旋轉塗佈光學式氣體感測器高分子紫質
外文關鍵詞: Calixarene, Spin-coated film, Amine
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

no abstract in chinese


In this study, protoporphyrin zinc IX (ZnPP) is spun onto cleaned glass substrate. The changes of their UV-Visible spectra are investigated upon exposure to amine vapors. ZnPP as sensing materials shows good sensitivity, fast response and reproducible towards amine vapors sensing. In the presence of amine vapor, Soret band wavelength spectrum response of ZnPP will be red shifted. This red-shift phenomenon in the wavelength spectrum cause by changes in electronic structure of ZnPP. The experimental results are verified by TDDFT Calculation by Gaussian 03.
Gaussian 03 is performed to simulate gas adsorption process and the accompanying changes in the electronic spectra. The adsorption process is carried on the central ring position and the peripheral of porphyrin ring. Based on adsorption energies calculated, the peripheral of porphyrin interaction shows a significant value which is important to note that the central ring position is not the only position which attack by analyte species could occur. TDDFT calculated shift in wavelength spectrum of the central ring adsorption site and substituent ring adsorption site respectively are 12.3 nm and 3.38 nm. Because of the experimental result shows significant red shift in the Soret Band after amine adsorption, therefore the central ring position is chosen as adsorption sites.
Upon exposure to various kinds of primary amines, the ZnPP responses show enhancement of absorbance increases with the alkyl chain length. This can be due to amine basicity. Increasing alkyl chain length will increase amine basicity. The electron-rich alkyl group donates electron density to the N atom and enhances interaction between amine and ZnPP.
In order to quantify concentration dependence of the ZnPP response towards amines, a number of isothermal models can be applied. A plot of c/∆A versus c is linear, therefore ZnPP response is following Langmuir adsorption model.
The sensing properties of porphyrin mixed with polymer and porphyrin mixed with calixarene is also studied. The responses show ∆A porphyrin mixed tbu-Calix[8]arene > ∆A porphyrin > ∆A porphyrin mixed PEG. These results can be explained by the difference surface character for each material.

Abstract 4 Acknowledgments 6 Contents 7 List of Tables 11 List of Figures 13 Chapter 1 Introduction 1.1 Reason of Study 24 1.2 Objectives 27 Chapter 2 Literature Review 2.1 Introduction to Porphyrin 28 2.2 Porphyrin Deposition Technique 30 2.2.1 Spin Coating Method 31 2.2.2 Langmuir-Blodgett Technique 34 2.2.3 Self Assembled Monolayer Method 36 2.2.4 Electropolymerization Technique 37 2.2.5 Vacuum Deposition Technique 38 2.3 Transducer for Metalloporphyrin 40 2.3.1 Mass Transduction 40 2.3.2 Optical Absorbance Transduction 45 2.4 The Electronic Structure of Porphyrin 49 2.4.1 The Spectra of Porphyrin 49 2.4.2 Gouterman Four Orbital Model 50 2.5 UV-Visible Absorption Spectroscopy Theoretical Principles 53 2.5.1 The Beer-Lambert Law 53 2.5.2 Electronic Transition 54 Chapter 3 Experimental Section 3.1 Chemical Material 58 3.1.1 Volatile Organic Compounds (VOCs) 58 3.1.2 Solvents 58 3.1.3 Porphyrins 58 3.2 Experimental Equipments 59 3.3 Instrumental Analysis 59 3.4 Experimental Methods 60 3.4.1 The Substrates Cleaning Procedures 60 3.4.2 The Thin Film Preparation 60 3.4.3 UV-Visible Spectroscopy Procedures 61 3.4.4 VOC Concentration Calculation 63 3.4.5 Absorbance Measurement 63 3.5 Experimental Setup 64 3.6 Computational Chemistry Method 65 3.6.1 Introduction of Computational Chemistry 66 3.6.2 Density Functional Theory 67 Chapter 4 Results and Discussions 4.1 Surface Morphology from Atomic Force Microscopy (AFM) 70 4.2 Thickness Profile from Stylus Profilometry 72 4.3 The UV-Visible Spectra of ZnPP in Solution and in Spin-coated Film 74 4.4 Interaction between ZnPP Film and Amine Vapors 76 4.4 The Red-Shifted Phenomena in ZnPP-Amine Adsorption Wavelength Spectrum and its explanation 83 4.4.1 Time Dependent Density Functional Theory (TD-DFT) 83 4.4.2 Natural Bond Orbital Analysis (NBO Analysis) 86 4.4.3 Molecular Orbital of ZnPP and its Interaction with Amine88 4.5 The Effect of Alkyl Chain Length in ZnPP Absorbance Responses 91 4.6 The Amine-ZnPP Adsorption by Gaussian 03 102 4.7 The Effect of Amine Structure in ZnPP Absorbance Responses 107 4.8 Kinetics of Amine Exposure in ZnPP Film 112 4.8.1 The Langmuir Model for ZnPP-Amine Adsorption 112 4.8.2 The Elovich Kinetics of Amine Exposure in ZnPP Film 117 4.9 Optical Sensing of Porphyrin mixed tbu-Calix[8]arene towards Amines 118 4.1 Kinetics of Amine Exposure in ZnPP tbu-Calix[8]arene Film 131 4.10.1 The Langmuir Adsorption of Porphyrin/tbu-Calix[8]arene 131 4.10.1 The Elovich Kinetics of Porphyrin/tbu-Calix[8]arene 133 4.11 Film Surface Characterization 134 4.12 Sensing Response Reproducibility 138 Chapter 5 Conclusions and Suggestions 5.1 Conclusions 140 5.2 Suggestions 141 References 142

[1] http://etd.caltech.edu/etd/available/etd-01122006-105657/unrestricted/AppendixB.pdf Appendix B. Simple Optical Sensor for Amine Vapors Based on Dyed Silica Microspheres.
[2] http://www.osha.gov
[3] Mirmohseni, A and Oladegaragoze, A., “Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpyrrolidone coated quartz crystal microbalance”, Sensors and Actuator B, Vol. 89, Issues 1-2, pp. 164-172 (2003).
[4] Di Natale, C., Macagnano, A., Repole, G., Saggio, G., D'Amico, A., Paolesse R., and Boschi, T., “The exploitation of metalloporphyrins as chemically interactive material in chemical sensors”, Materials Science and Engineering: C, Vol. 5, Issues 3-4, pp. 209-215 (1998).
[5] Persaud, K.C., “Gas Sensors”, School of Chemical Engineering and Analytical Science, The university of Manchester, United Kingdom.
[6] James, D., Scott, S.M., Ali, Z., O’Hare, W.T., “Chemical sensors for electronic nose systems”, Mikrochimica acta, Vol. 149, pp. 1-17 (2005).
[7] D'Amico, A., Di Natale, C., Paolesse, R., Macagnano, A. and Mantini, A., “Metalloporphyrins as basic material for volatile sensitive sensors”, Sensors and Actuators B: Chemical, Vol. 65, Issues 1-3, pp. 209-215 (2000).
[8] Paolesse, R., Di Natale, C., Dall’Orto, V.C., Macagnano, A., Angelaccio, A., Motta, N., Sgarlata, A., Hurst, J., Rezzano, I., Mascini, M., et al., “Porphyrin thin films coated quartz crystal microbalances prepared by electropolymerization technique”, Thin Solid Films, Vol. 354, Issues 1-2, pp. 245-250 (1999)
[9] Richardson, T.H., Dooling, C.M., Jones, L.T., Brook, R.A, “Development and optimization of porphyrin gas sensing LB films”, Advances in Colloid and Interface Science, Vol. 116, pp. 81 – 96 (2005).
[10] Rothemund, P., "A New Porphyrin Synthesis. The Synthesis of Porphin", Journal of the American Chemical Society, Vol. 58 (4), pp. 625-627 (1936)
[11] http://www.mse.arizona.edu/faculty/birnie/Coatings/index.htm
[12] Spadavecchia, J., Rella, R., Siciliano, P., Manera, M.G., Alimelli, A., Paolesse, R., Di Natale C. and D’Amico, A., “Optochemical vapour detection using spin coated thin film of ZnTPP”, Sensors and Actuators B: Chemical, Vol. 115, Issue 1, pp. 12-16 (2006).
[13] Roberts, G., “Langmuir-Blodgett Films”, Plenum Press, New York (1990).
[14] Richardson, T. H., Dooling, C. M., Worsfold, O., Jones, L. T., Kato, K., Shinbo, K., Kaneko, F., Tregonning, R., Vysotsky M. O., and Hunter, C. A., “Gas sensing properties of porphyrin assemblies prepared using ultra-fast LB deposition”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 198-200, pp. 843-857 (2002).
[15] Humbert, C., Volcke, C., Sartenaer, Y., Peremans, A., Thiry, P.A., and Dreesen, L., “Molecular conformation and electronic properties of protoporphyrin-IX self-assembled monolayers adsorbed on a Pt(1 1 1) surface”, Surface Science, Vol. 600, Issue 18, pp. 3702-3709 (2006).
[16] Armijo, M. F., Goya, C., Gimeno, Y., Arévalo, M.C., Aguirre, M.J., and Creus, A.H., “Study of the electropolymerization of tetrakis (3-aminophenyl) porphyrin Fe(III) chloride on Au electrodes by cyclic voltammetry and STM”, Electrochemistry Communications, Vol. 8, Issue 5, pp. 779-784 (2006).
[17] Bruti, E.M., Giannetto, M. Mori, G., and Seeber, R., “Electropolymerization of Tetrakis(o-aminophenyl)porphyrin and Relevant Transition Metal Complexes from Aqueous Solution. The Resulting Modified Electrodes as Potentiometric Sensors”, Electroanalysis, Vol. 11, No. 8, pp. 565 – 572 (1999).
[18] http://www.pfonline.com/articles/069901.html
[19] Nakamura, K., Watanabe, M., Zhou, M., Fujishima, M., Tsuchiya, M., Handa, T., Ishii, S., Noguchi, H., Kashiwagi, K., and Yoshida, Y., “Plasma polymerization of cobalt tetraphenylporphyrin and the functionalities of the thin films produced”, Thin Solid Films, Vol. 345, Issue 1, pp. 99-103 (1999).
[20] D'Amico, A., Di Natale, C., Paolesse, R., Macagnano, A. and Mantini, A., “Metalloporphyrins as basic material for volatile sensitive sensors”, Sensors and Actuators B: Chemical, Vol. 65, Issues 1-3, pp. 209-215 (2000).
[21] Montmeat, P., Madonia, S., Pasquinet, E., Hairault, L., Gros, C.P., Barbe, J.M., Guilard, R., “Metalloporphyrins as sensing material for quartz-crystal microbalance nitroaromatics sensors”, IEEE Sensors Journal, Vol. 5, Issues 4, pp. 610-615 (2005).
[22] Ding, H., Erokhin, V., Ram, M.K., Paddeu, S., Valkova, L., and Nicolini, C., “A physical insight into the gas-sensing properties of copper (II) tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin Langmuir–Blodgett films”, Thin Solid Films, Vol. 379, Issues 1-2, pp. 279-286 (2000).
[23] Tonezzer, M., Quaranta, A., Maggioni, G., Carturan, S. and Mea, G.D., “Optical sensing responses of tetraphenyl porphyrins toward alcohol vapours: A comparison between vacuum evaporated and spin-coated thin films”, Sensors and Actuators B: Chemical, Vol. 122, Issue 2, pp. 620-626 (2007).
[24] Umar, A.A., Salleh, M.M., Yahaya, M., “Self-assembled monolayer of copper(II) meso-tetra(4-sulfanatophenyl)porphyrin as an optical sensor”, Sensors and Actuators B: Chemical, Vol. 101, pp. 231–235 (2004).
[25] Weiss, C., Kobayashi, T., Gouterman, M., “Spectra of Porphyrins Part III. Self-Consistent Molecular Orbital Calculations of Porphyrin”, Journal of Molecular Spectroscopy, Vol. 16, pp. 415- 450 (1965).
[26] Gouterman, M., Wagnière, G.H., “Spectra of Porphyrin. Part II: Four Orbital Model”, Journal of Molecular Spectroscopy, Vol. 11, pp. 108-127 (1963).
[27] Liao, M., and Scheiner, S., “Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn”, Journal of Chemical Physics, Vol. 117, No. 11, pp. 205 – 219 (2002).
[28] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm
[29] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab1.htm
[30] Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
[31] Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991.
[32] http://www.brewerscience.com/products/cee/technical/spintheory/
[33] Walsh, P.J., Gordon, K.C., Officer, D.L. and Campbell, W.M., “A DFT study of the optical properties of substituted Zn(II)TPP complexes”, Journal of Molecular Structure: THEOCHEM, Vol. 759, Issues 1-3, pp. 17-24 (2006).
[34] Skoog, D.A., Leary, J.J., “Principles of Instrumental Analysis”, 4th Edition, Saunders College Publishing (1992).
[35] Luo, L., Chang, C.-H., Chen, Y.-C., Wu, T.-K., and Diau, E.W.-G., “Ultrafast Relaxation of Zinc Protoporphyrin Encapsulated within Apomyoglobin in Buffer Solutions”, Journal Physical Chemistry B, 2007.
[36] Dunbar, A., Richardson, T.H., McNaughton, A.J., Barford, W., Hutchinson, J. and Hunter, C.A., “Understanding the interactions of porphryin LB films with NO2”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 284-285, pp. 339-344 (2006).

QR CODE