簡易檢索 / 詳目顯示

研究生: 簡鈺鴻
Yu-Hung Chien
論文名稱: 多工型矽烷反應蒸餾製程開發與產品切換操作研究
Development and Product Transition Operation of Multi-Tasking Silane Reactive Distillation Process
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
李瑞元
Jui-Yuan Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 132
中文關鍵詞: 多工程序反應蒸餾矽烷製程線上產品切換
外文關鍵詞: Multi-tasking process, Reactive distillation, Silane process, On-line production transition
相關次數: 點閱:202下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於經濟以及環保因素的考量下,將多個單元結合而成的多工程序可以是化工製程強化開發的方向,不僅可縮減原有製程之占地空間與設備成本,也可根據各產品市場需求來決定生產所需產品,由於目標產品轉換過程中,所消耗的能源以及產出之產物皆不具有生產價值,因此如何藉由線上方式進行產品轉換,以減少設備於停車再開俥至目標產物正常生產之時間與物料浪費是相當重要的。
本研究利用模擬退火法進行多工型反應蒸餾程序之最適化,並於控制架構設計上加入訊號選擇器,溫度控制器能夠控制不同目標程序之溫度靈敏板,使得各目標產品之純度能夠有效被控制。
根據自由度分析結果得知,可於產品切換程序中能夠被操控之操作變數為塔頂壓力控制器及兩個溫度控制器。本研究以一次性調整操作變數至目標產物之常態操作值或改變控制器之設定點以進行產品切換策略之設計,提出8種基本策略,並根據此8種基本策略提出2種修正策略─時延超調策略。
一次性改變控制器設定點之操作是一較快速切換程序之方法。與修正策略相比,二氯矽烷切換至單氯矽烷程序可減少切換時間2.8 hr,不合乎規格總產物量減少了18.05 %,冷凝器負載與再沸器能耗約各節省4.16 %與4.2 %。在二氯矽烷與單氯矽烷相互轉換及矽甲烷切換至單氯矽烷時是可行的,單氯矽烷切換至矽甲烷時則因為各控制變數間相互交換作用過大,使系統之動態響應過於激烈,造成系統出現振盪行為,可將部分控制器調整為手動模式,改為調整操作變數,避免相互交換作用影響控制器有較大的作動。


Under the consideration of economy and environment, the multi-tasking process which combines the function of multiple units will be the main direction of chemical process development. It not only reduces the space and the investment costs, but also decide the production plan by market demand. Operating the product transition without shut-down can decrease the waste of raw material.
The silane multi-tasking reactive distillation process is optimized by simulated annealing method. Signal selector is used in the control structure for the multi-tasking reactive distillation process because each case has unique temperature sensitive stages.
According to the analysis of degrees of freedom, the manipulated variables are the tower top pressure controller and two temperature controllers for the product transition.
It takes a long time and might make the process toward another steady-state as the nominal values of the target product are switched simultaneously. When the set point of the target product is switched simultaneously, the transition time might be reduced. Compared with the first delay overshoot strategy, the best results show that the switching time is reduced by 2.8 hours, the total off-specification product is reduced by 18.05%, and the condenser duty and reboiler duty are saved by 4.16% and 4.2%, respectively. Sometimes, due to the interactions among each controller, the process responses would have oscillation behavior. To avoid the interaction between the controllers, some controllers should be switched to manual mode and adjusting the operating variables directly.

致謝 摘要 Abstract 目錄 圖目錄 表目錄 第一章、緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機與目的 1.4 組織章節 第二章、熱力學與動力學模式 2.1 前言 2.2 熱力學模型 2.3 動力學 第三章、多工反應蒸餾程序設計 3.1 前言 3.2 多工反應蒸餾程序設計概念 3.3 模擬退火法 3.3.1 模擬退火法原理 3.3.2 模擬退火法之應用 3.3.3 模擬退火演算法及操作流程 3.4 多工反應蒸餾最適化程序 第四章、多工反應蒸餾線上產品切換 4.1 前言 4.2 動態控制架構 4.2.1 庫存控制環路設計 4.2.2 品質控制環路設計 4.2.3 動態控制架構結果 4.3 基礎策略應用於線上產品轉換 4.3.1 二氯矽烷至單氯矽烷產品切換 4.3.2 單氯矽烷至二氯矽烷產品切換 4.3.3 單氯矽烷至矽甲烷產品切換 4.3.4 矽甲烷至單氯矽烷產品切換 4.3.5 模擬結果討論 4.4 時延超調策略應用於產品切換 4.4.1 二氯矽烷至單氯矽烷產品切換 4.4.2 單氯矽烷至二氯矽烷產品切換 4.4.3 單氯矽烷至矽甲烷產品切換 4.4.4 矽甲烷至單氯矽烷產品切換 4.4.5 模擬結果討論 4.5 基礎策略與時延超調策略結果比較 第五章、結論與未來展望 5.1 結論 5.2 未來展望 參考文獻 附錄一 觸媒資料 附錄二 年總成本計算

中華民國行政院經濟部能源局2016年能源產業技術白皮書https://www.go-moea.tw/download/2016%E5%B9%B4%E8%83%BD%E6%BA%90%E7%94%A2%E6%A5%AD%E6%8A%80%E8%A1%93%E7%99%BD%E7%9A%AE%E6%9B%B8.pdf
中華民國行政院經濟部能源局2016能原統計年報https://www.moeaboe.gov.tw/ECW/populace/content/ContentLink.aspx?menu_id=137
中華民國行政院經濟部國際貿易局推動綠色貿易專案辦公室-台灣綠色產業報告-台灣太陽光電產業趨勢和市場現況https://www.greentrade.org.tw/zh-hant/publication/184
中華民國行政院經濟部工業局智慧電子產業計畫推動辦公室-半導體產業現況https://www.sipo.org.tw/industry-overview/industry-status-quo/semiconductor-industry-status-quo.html
Agreda, V. H. & Partin, L. R. (Reactive Distillation Process for the Production of Methyl Acetate). U.S. Patent 4435595, March 6, 1984.
Al-Arfaj, M. A. & Luyben, W. L. Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column, Ind. Eng. Chem. Res., 39, 3298-3307, 2000.
Al-Arfaj, M. A. & Luyben, W. L. Control Study of Ethyl Tert-Butyl Ether Reactive Distillation, Ind. Eng. Chem. Res., 41, 3784-3796, 2002.
Alcantara-Avila, J. R., Terasaki, M., Lee, H. Y., Chen, J. L., Cabrera-Ruiz, J., Sotowa, K. I., & Horikawa, T. Design and Control of Diphenyl Carbonate Reactive Distillation Processes Using Arrangements with Heat-integrated Stages. In Advanced Control of Industrial Processes (AdCONIP), 2017 6th International Symposium on IEEE., 288-293, 2017
Almeida, A. S., Wada, K., Secchi, A. R. Simulation of Styrene Polymerization Reactors: Kinetic and Thermodynamic Modeling. Braz. J. Chem. Eng., 25, 337-349, 2008
Asteasuain, M., Bandoni, A., Sarmoria, C., & Brandolin, A. Simultaneous Process and Control System Design for Grade Transition in Styrene Polymerization. Chem. Eng. Sci., 61, 3362-3378, 2006
Backhaus, A. A. Continuous Process for the Manufacture of Esters, US Patent No.1,400,849, December 20, 1921
Barbosa, D. & Doherty, M. F. Simple Distillation of Homogeneous Reactive Mixtures, Chem. Eng. Sci., 43, 541-550, 1988.
Cardoso, M. F., Salcedo, R. L., de Azevedo, S. F. & Barbosa, D. Optimization of Reactive Distillation Processes with Simulated Annealing. Chem. Eng. Sci., 55, 5059-5078, 2000
Chang, H.-N. & Lee H.-Y. Innovative Design of Diphenyl Carbonate Process via One Reactive Distillation with a Feed-splitting Arrangement , Chem. Eng. Trans, 61, 445-450, 2017
Chen, D. Y., Weng, K. C., Wang, S. J. & Lee, H. Y. Design of Diphenyl Carbonate Process via Reactive Distillation Configuration, Chem. Eng. Trans, 45, 1195-1200, 2015
Chen, F., Huss, R. S., Malone, M. F. & Doherty M. F. Simulation of Kinetic Effects in Reactive Distillation, Comput. Chem. Eng., 24, 2457-2472, 2000.
Cheng, J. K., Lee, H. Y., Huang, H. P. & Yu, C. C. Optimal Steady-state Design of Reactive Distillation Processes Using Simulated Annealing. J. Taiwan Inst. Chem. Eng., 40, 188-196, 2009
Ciric, A. R. & Miao, P. Z. Steady-state Multiplicities in an Ethylene-Glycol Reactive Distillation Column. Ind. Eng. Chem. Res., 33, 2738-2748, 1994.
Doherty, M. F. & Buzad, G. Reactive Distillation by Design, Chem. Eng. Res. Des., 70, 448-458, 1992.
Gharaghani, M., Abedini, H., & Parvazinia, M. Dynamic Simulation and Control of Auto-refrigerated CSTR and Tubular Reactor for Bulk Styrene Polymerization. Chem. Eng. Res. Des., 90, 1540-1552, 2012
Güttinger, T. E. & Morari, M. Predicting Multiple Steady States in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems, Ind. Eng. Chem. Res., 38, 1633-1648, 1999.
Güttinger, T. E. & Morari, M. Predicting Multiple Steady States in Equilibrium Reactive Distillation. 2. Analysis of Hybrid Systems, Ind. Eng. Chem. Res., 38, 1649-1665, 1999.
Huang, X., Ding, W. J., Yan, J. M. & Xiao, W. D. Reactive Distillation Column for Disproportionation of Trichlorosilane to Silane: Reducing Refrigeration Load with Intermediate Condensers. Ind. Eng. Chem. Res., 52, 6211-6220, 2013
Jacobs, R. & Krishna, R. Multiple Solutions in Reactive Distillation for Methyl tert-Butyl Ether Synthesis, Ind. Eng. Chem. Res., 32, 1706-1709, 1993.
Kaymak, D. B. & Luyben, W. L. Effect of the Chemical Equilibrium Constant on the Design of Reactive Distillation Columns. Ind. Eng. Chem. Res., 43, 3666-3671, 2004.
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by Simulated Annealing, Science, 220(4598), 671-680, 1983
Kiss, A. A., Segovia-Hernández, J. G., Bildea, C. S., Miranda-Galindo, E. Y. & Hernández, S. Reactive DWC Leading the Way to FAME and Fortune. Fuel, 95, 352-359 , 2012
Kiss, A. A. Advanced Distillation Technologies: Design, Control and Applications. John Wiley & Sons, 2013.
Luyben, W. L. Distillation Design and Control Using Aspen Simulation. John Wiley & Sons, 2013.
Medina-Herrera, N., Tututi-Avila, S., Jiménez-Gutiérrez, A., & Segovia-Hernández, J. G. Optimal Design of a Multi-product Reactive Distillation System for Silanes Production. Comput. Chem. Eng., 105, 132-141, 2017.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1087-1092, 1953
Okasinski, M. J. & Doherty, M. F. Design Method for Kinetically Controlled, Staged Reactive Distillation Columns. Ind. Eng. Chem. Res., 37, 2821-2834, 1998
Shah, M., Kiss, A. A., Zondervan, E., & de Haan, A. B. Enhanced Configurations for Polyesters Synthesis by Reactive Distillation. Comput. Aided Chem. Eng., 32, 457-462, 2013
Sneesby, M. G., Tade, M. O. & Smith, T. N. Two-point Control of a Reactive Distillation for Composition and Conversion, J. Proc. Cont., 9, 19-31, 1999.
Sneesby, M. G., Tade, M. O., Datta, R. & Smith, T. N. ETBE Synthesis via Reactive Distillation. 1. Steady-state Simulation and Design Aspects, Ind. Eng. Chem. Res., 36, 1855-1869, 1997.
Tang, Y. T., Chen, Y. W., Huang, H. P., Yu, C. C., Hung, S. B. & Lee, M. J. Design of Reactive Distillations for Acetic Acid Esterification, AIChE J., 51, 1683-1699, 2005.
Tang, Y. T., Huang, H. P. & Chien, I. L. Design of a Complete Ethyl Acetate Reactive Distillation System, J. Chem. Eng. Japan, 36, 1352-1363, 2003.
Taylor, R. & Krishna, R. Modelling Reactive Distillation. Chem. Eng. Sci., 55, 5183-5229, 2000
Tseng, Y. T., Ward, J. D. & Lee, H. Y. Design and Control of a Continuous Multi-product Process with Product Distribution Switching: Sustainable Manufacture of Furfuryl Alcohol and 2-methylfuran. Chem. Eng. Process.: Process Intensification, 105, 10-20, 2016
Tuchlenski, A., Beckmann, A., Reusch, D., Düssel, R., Weidlich, U., & Janowsky, R. Reactive Distillation—Industrial Applications, Process Design & Scale-up. Chem. Eng. Sci, 56, 387-394, 2001
Turton, R., Bailie, R. C., Whiting, W. B., & Shaeiwitz, J. A. Analysis, Synthesis and Design of Chemical Processes. Pearson Education, 2008
Wang, S. J. & Wong, D. S. Online Switching of Entrainers for Acetic Acid Dehydration by Heterogeneous Azeotropic Distillation. J Process Control, 23, 78-88, 2013

QR CODE