簡易檢索 / 詳目顯示

研究生: 黃駿仁
Jun-Ren Huang
論文名稱: 螺絲頭鎖入與材料對鎖定骨板疲勞強度影響之研究
Screw Head Plugs Increase Locking plate Fatigue Strength in 316L but not in Titanium
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 螺絲頭鎖定式骨板鎖入扭力有限元素分析生物力學測試凹口效應不鏽鋼鈦合金疲勞強度疲勞壽命
外文關鍵詞: Insert torque, Notch effect, Fatigue life, Work hardening
相關次數: 點閱:404下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在外科手術中,鎖定式骨板(Locking plate)廣泛應用於各種不同類型與部位的骨折治療,與傳統的動態加壓式骨板(dynamic compression plate)相比,鎖定式骨板的螺絲頭與骨板藉由螺紋結合為一體,可增加整體結構的剛性,提供較高的穩定度。鎖定式骨板常見的破壞為疲勞破壞,破壞的起始位置好發於截骨附近骨板上的螺紋孔洞。因此本研究之目的為探討使用螺絲頭鎖入骨板截骨處的空螺絲洞藉此提升鎖定式骨板疲勞強度的方法,以及鈦合金能否使用相同方法克服螺紋結構上的凹口效應。
    在本文中,分為生物力學測試以及有限元素分析兩部分,在生物力學測試方面,總共對六種骨板進行降伏測試與疲勞測試,而在實驗後得到位移、負載之關係而計算出其彎曲勁度、降伏強度與疲勞壽命;在有限元素方面利用SolidWorks建立三維骨板模型並匯入ANSYS進行模擬,其負載情形與邊界條件與機械測試雷同,藉由有限元素分析得到最大von-Mises應力與位移之分析數值,並將生物力學測試結果與有限元素分析結果進行相關性比較。
    由機械測試結果得知,將不鏽鋼骨板的空螺絲洞鎖入螺絲頭後,與未鎖入螺絲頭的骨板比較,疲勞壽命將得到顯著提升。鈦合金骨板在鎖入螺絲頭後疲勞壽命並沒有得到提升。提高螺絲頭鎖入扭力對疲勞壽命並無顯著影響。有限元素分析結果顯示,塞入螺絲頭後並不會降低骨板的最大von-Mises應力。微維克氏硬度分析結果發現,不鏽鋼骨板塞入螺絲頭後螺紋處產生加工硬化,鈦合金骨板則無。生物力學測試與有限元素分析結果相互比對後,發現加工硬化是使不鏽鋼骨板疲勞壽命提升的原因,而塞入螺絲頭並不會降低骨板的最大von-Mises應力,驗證了鈦合金骨板疲勞壽命無法提升的結果。


    Locking plate is widely used for the treatment of various kinds of bodily fractures. Locking plate can provide more stiffness and stability than dynamic compression plate, because its locking screw can lock on plate by thread hole. Fatigue breakage was the most commonly seen mode of failure and mostly occurs through the screw holes around the fracture site. The purpose of this study was to increase the locking plate fatigue strength with screw head insertion. And to investigate if the screw head insertion can improve notch effect in titanium alloy plate.
    In biomechanical testing, plates were tested for both stiffness and fatigue mechanical properties. In finite element analysis, three-dimensional plate model used same structures and conditions with those applied in the biomechanical tests. After processing, the von-Mises stresses and displacement were recorded and correlated with the mechanical test results.
    From the results of biomechanical test, plugging the empty holes could increase the fatigue life of the stainless steel plates but not in titanium alloy plate. The insertion torque was increased from 4 Nm to 12 Nm, the stainless steel plates fatigue life could also be increased, but the differences were still not significant. In the finite element analysis, plugging the empty holes did not decrease the von-Mises stress. The micro Vickers-hardness shows that the stainless steel plate work hardening occurs after screw head insertion but not in titanium alloy plate.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄索引 VI 表目錄索引 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 第二章 研究方法 8 2.1 研究程序 8 2.2 鎖定式骨板之有限元素分析模型建立 8 2.2.1 建立骨板及螺絲頭基本幾何參數 9 2.2.2 骨板模型幾何設計 10 2.3 機械測試 12 2.3.1 鎖定式骨板實體模型測試類別 13 2.3.2 鎖定式骨板測試夾治具準備 17 2.3.3 骨板模型降伏測試 18 2.3.4 骨板模型疲勞測試 21 2.4 有限元素分析 22 2.4.1 骨板模型建立 22 2.4.2 材料設定與網格化 23 2.4.3 邊界條件設定與求解 24 2.4.4 後處理與收斂性分析 25 2.5 微維克氏硬度測試 26 2.6 統計分析 27 第三章 結果 28 3.1 機械測試結果 28 3.1.1 骨板模型降伏測試結果 28 3.1.2 骨板疲勞測試之結果 36 3.2 有限元素分析結果 51 3.3 微維克氏硬度測試結果 54 第四章 討論 58 4.1 降伏測試結果討論 58 4.2 疲勞測試結果討論 59 4.2.1 破斷分析 61 4.2.2 破斷面晶像結構 63 4.2.3 微維克氏硬度測試結果討論 72 4.3 研究限制 75 第五章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 78

    [1] K. A. Egol, E. N. Kubiak, E. Fulkerson, F. J. Kummer, and K. J. Koval, "Biomechanics of locked plates and screws," J Orthop Trauma, vol. 18, pp. 488-93, Sep 2004.
    [2] S. Walsh, R. Reindl, E. Harvey, G. Berry, L. Beckman, and T. Steffen, "Biomechanical comparison of a unique locking plate versus a standard plate for internal fixation of proximal humerus fractures in a cadaveric model," Clin Biomech (Bristol, Avon), vol. 21, pp. 1027-31, Dec 2006.
    [3] A. L. Freeman, P. Tornetta III, A. Schmidt, J. Bechtold, W. Ricci, and M. Fleming, "How much do locked screws add to the fixation of "hybrid" plate constructs in osteoporotic bone?," J Orthop Trauma, vol. 24, pp. 163-9, Mar 2010.
    [4] C. K. Chao, C. C. Hsu, J. L. Wang, and J. Lin, "Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses," Clin Biomech (Bristol, Avon), vol. 22, pp. 59-66, Jan 2007.
    [5] C. C. Hsu, C. K. Chao, J. L. Wang, S. M. Hou, Y. T. Tsai, and J. Lin, "Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses," J Orthop Res, vol. 23, pp. 788-94, Jul 2005.
    [6] A. R. Tolat, A. Amis, S. Crofton, and J. Sinha, "Failure of humeral fracture fixation plate in a young patient using the Philos system: case report," J Shoulder Elbow Surg, vol. 15, pp. e44-7, Nov-Dec 2006.
    [7] T. De Baere, F. Lecouvet, and O. Barbier, "Breakage of a volar locking plate after delayed union of a distal radius fracture," Acta Orthop Belg, vol. 73, pp. 785-90, Dec 2007.
    [8] K. Yukata, K. Doi, Y. Hattori, and S. Sakamoto, "Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report," J Hand Surg Am, vol. 34, pp. 907-9, May-Jun 2009.
    [9] H. A. Vallier, T. A. Hennessey, J. K. Sontich, and B. M. Patterson, "Failure of LCP condylar plate fixation in the distal part of the femur. A report of six cases," J Bone Joint Surg Am, vol. 88, pp. 846-53, Apr 2006.
    [10] G. Button, P. Wolinsky, and D. Hak, "Failure of less invasive stabilization system plates in the distal femur: a report of four cases," J Orthop Trauma, vol. 18, pp. 565-70, Sep 2004.
    [11] C. Sommer, R. Babst, M. Muller, and B. Hanson, "Locking compression plate loosening and plate breakage: a report of four cases," J Orthop Trauma, vol. 18, pp. 571-7, Sep 2004.
    [12] J. M. Banovetz, R. Sharp, R. A. Probe, and J. O. Anglen, "Titanium plate fixation: a review of implant failures," J Orthop Trauma, vol. 10, pp. 389-94, 1996.
    [13] F. B. Christensen, M. Dalstra, F. Sejling, S. Overgaard, and C. Bunger, "Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel," Eur Spine J, vol. 9, pp. 97-103, Apr 2000.
    [14] P. Q. Chen, S. J. Lin, S. S. Wu, and H. So, "Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design," Spine (Phila Pa 1976), vol. 28, pp. 881-6; discussion 887, May 1 2003.
    [15] M. Tompkins, D. J. Paller, D. C. Moore, J. J. Crisco, and R. M. Terek, "Locking buttons increase fatigue life of locking plates in a segmental bone defect model," Clin Orthop Relat Res, vol. 471, pp. 1039-44, Mar 2013.
    [16] J. Bellapianta, K. Dow, N. A. Pallotta, P. P. Hospodar, R. L. Uhl, and E. H. Ledet, "Threaded screw head inserts improve locking plate biomechanical properties," J Orthop Trauma, vol. 25, pp. 65-71, Feb 2011.
    [17] K. Meyers, T. Achor, J. Ahn, K. Khalsa, D. Lorich, T. Wright, et al., "The Effect of Locking Inserts and Overtorque on the Fatigue Behavior of Locking Compression Plates," 56th Annual Meeting of the Orthopaedic Research Society, vol. Poster NO.1768, 2010.
    [18] J. Cartner, A. Messina, C. Baker, T. A. Russell, P. Tornetta III, and W. M. Ricci, "Does insertion torque affect the mechanics of locking hole inserts and fatigue performance of bridge plate constructs?," Bone Joint Sci, vol. 2, 2011.
    [19] R. Firoozabadi, E. McDonald, T. Q. Nguyen, J. M. Buckley, and U. Kandemir, "Does plugging unused combination screw holes improve the fatigue life of fixation with locking plates in comminuted supracondylar fractures of the femur?," J Bone Joint Surg Br, vol. 94, pp. 241-8, Feb 2012.
    [20] J. K. Eichinger, J. P. Herzog, and E. D. Arrington, "Analysis of the mechanical properties of locking plates with and without screw hole inserts," Orthopedics, vol. 34, p. 19, Jan 2011.
    [21] P. Tornetta III, W. M. Ricci, B. Jones, Y. Zheng, and A. Whitten, "Filling empty holes in locked plates: Does it improve fatigue properties?," Annual Meeting of the Orthopaedic Trauma Association, vol. Poster NO.33, 2008.
    [22] P. Chao, B. P. Conrad, D. D. Lewis, M. Horodyski, and A. Pozzi, "Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate," BMC Vet Res, vol. 9, p. 125, 2013.
    [23] J. L. Stambough, A. M. Genaidy, R. L. Huston, H. Serhan, F. El-khatib, and E. H. Sabri, "Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes," J Spinal Disord, vol. 10, pp. 473-81, Dec 1997.
    [24] C. Kanchanomai, V. Phiphobmongkol, and P. Muanjan, "Fatigue failure of an orthopedic implant – A locking compression plate," Engineering Failure Analysis, vol. 15, pp. 521-530, 2008.
    [25] G. F. Vander Voort and R. Fowler, "Low-load Vickers microindentation hardness testing," AM & P, vol. 170, pp. 28-33, Apr 2012.
    [26] C. Gaebler, S. Stanzl-Tschegg, G. Heinze, B. Holper, T. Milne, G. Berger, et al., "Fatigue strength of locking screws and prototypes used in small-diameter tibial nails: A biomechanical study," J Trauma, vol. 47, pp. 379-384, Aug 1999.
    [27] D. Pienkowski, G. C. Stephens, T. M. Doers, and D. M. Hamilton, "Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants," Spine (Phila Pa 1976), vol. 23, pp. 782-8, Apr 1 1998.
    [28] R. Frigg, "Development of the Locking Compression Plate," Injury, vol. 34, pp. 6-10, 2003.

    QR CODE