簡易檢索 / 詳目顯示

研究生: 劉宸侑
Chen-Yu Liu
論文名稱: 氧化鉻膠體電解液內微弧氧化鍍製綠色膜層之製備及量測
Preparation and measurement of green coatings through plasma electrolytic oxidation in electrolytic solutions of chromia inclusions
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 何清華
Ching-Hwa Ho
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 微弧氧化氧化鉻綠色膜層膠體
外文關鍵詞: plasma electrolytic oxidation, chromia, inclusions, green coatings
相關次數: 點閱:254下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在鋁合金6061上進行微弧氧化層著色並研究其膜層結構,我們添加氧化鉻膠體於電解液。使用平均粒徑69 nm合成氧化鉻粉末,和平均粒徑351 nm GN-M商用氧化鉻粉末進行鍍製,雖然兩種粉末都屬於高度缺氧相的氧化鉻(oxygen deficient, Cr2O3-δ)剛玉 (Corundum type)晶體結構,但完成著色的綠色膜層會氧化成接近組成比的六方晶相Cr2O3。由於粒徑大小不同,所鍍製出來之膜層不同,粒徑大的GN-M氧化鉻商用粉末只在膜層表面反應,而粒徑小的合成氧化鉻粉末進入到膜層內部反應。透過微結構知道,微弧放電會發生在氧化鉻與氧化鋁之界面層,故粒徑小之合成粉末會引發微弧放電深入膜層內部造成孔洞及破壞,因此孔洞深入膜層,緻密層近乎消失;而粒徑大之GN-M商用粉末會將微弧放電引至表面,而使得孔洞及破壞發生在外層,使內部緻密層保存完整。
利用阻抗分析儀(EIS)之電容量測,判斷氧化鋁為N型半導體氧化物,經由Mott-Schottky theory計算出載子流密度(carrier density),判斷在不同時間下,其氧空位之多寡。由暫態電壓電流圖可以推測氧化鉻屬於P型半導體氧化物。進而推測氧化鉻與氧化鋁界面層吸引微弧放電是因為含有兩種半導體氧化物特性之材料結合。


In an effort to color the aluminum alloy surface and study the film structure in green via plasma electrolytic oxidation (PEO), two alkaline solution have been employed with particulate inclusions and sodium aluminate. We use a self-made chromia pigment with a mean size 69 nm and commercially available pigment, GN-M, with a larger particle size 351 nm. Both pigments are oxygen deficient Cr2O3-δ of corundum-type structure before coating, the oxidative environment of PEO converts them into stoichiometric Cr2O3. Due to difference of particle size, resulting in very different microstructure. The GN-M inclusion of large size amasses on top of the coating, while the self-made inclusion of small size goes deep. We could observe the Cr2O3-Al2O3 interface brings the electric microdischarges burns from microstructure. The self-made particulate inclusions bring the electric microdischarges inside the coating and create inner pores and damages. Therefore, the hole into the film and dense layer almost disappeared. On the other hand, the GN-M inclusions bring the electric microdischarges on coating surface and create outer pores and damage. So we can keep the inner dense layer intact.
Through the electrochemical impedance spectroscopy (EIS) analysis, we confirm PEO alumina is an N-type semiconductor oxide. We subsequently calculate the carrier density by Mott-Schottky theory and measure the oxygen vacancies at different PEO times. From the transient voltage-current diagram, we infer that chromium oxide belongs to P-type semiconductor oxide. It is further assumed that the Cr2O3-Al2O3 interface brings the electric microdischarges because the two types of semiconductors containing opposite carriers and eliminate each other at their interface.

摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 4 2.1 微弧氧化處理技術 4 2.1.1 微弧氧化技術發展 4 2.1.2 微弧氧化原理與機制 5 2.1.3 微弧氧化影響因素 7 第三章 實驗方法與步驟 16 3.1 實驗藥品耗材與儀器設備 16 3.1.1 試片基材 16 3.1.2 電解液製備 17 3.1.3 試片前置處理 17 3.1.4 微弧氧化製程設備 17 3.1.5 其他藥品與儀器 18 3.1.6 分析儀器 19 3.2 實驗流程 20 3.2.1 試片前處理 21 3.2.2 氧化鉻粉末 22 3.2.3 電解液配置 23 3.2.4 脈衝直流電流參數 24 3.2.5 PEO著色實驗 25 3.2.6 PEO膜薄層條件下外加電流暫態電壓電流響應量測 27 3.2.7 PEO膜層條件下Mott-Schottky分析 28 3.3 鑑定與分析 30 3.3.1 多功能高功率X光繞射儀 30 3.3.2 X光粉末繞射儀 30 3.3.3 熱燈絲掃描式電子顯微鏡 30 3.3.4 動態光散射儀 (Dynamic Light Scattering, DLS) 31 3.3.5 電化學分析儀 31 第四章 結果與討論 34 4.1 兩種氧化鉻顏料粉末 34 4.2 動態光散射(DLS)分析氧化鉻綠色顏料 36 4.3 相同電流下佔空比之影響 38 4.4 特定佔空比下改變電流之影響 41 4.5 兩種氧化鉻顏料電解液鍍製膜層之附著力測試和相組成 50 4.6 PEO膜層條件下之Mott-Schottky分析 52 4.7 Mott-Schottky理論斜率之計算施體密度(donor density, Nq) 54 4.8 PEO薄膜層條件下外加電流暫態電壓電流響應量測 59 第五章 結論 68 第六章 參考文獻 70

[1] A. Lugovskoy, and M. Zinigr, “Plasma Electrolytic Oxidation of Valve Metals,” 2013.
[2] C. Blawert et al., “Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments,” Advanced Engineering Materials, vol. 8, no. 6, pp. 511-533, 2006.
[3] Y. G. Ko et al., “An electrochemical analysis of AZ91 Mg alloy processed by plasma electrolytic oxidation followed by static annealing,” Journal of Alloys and Compounds, vol. 509, pp. S468-S472, 2011.
[4] M. M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: high field regime,” Materials Science and Engineering, vol. Rll, pp. 243-294, 1993.
[5] E. V. Parfenov et al., “Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling,” Surface and Coatings Technology, vol. 269, pp. 2-22, 2015.
[6] F. C. Walsh et al., “Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys,” Transactions of the IMF, vol. 87, no. 3, pp. 122-135, 2013.
[7] A. A. Voevodin et al., “Characterization of wear protective Al-Si-0 coatings forrned on Al-based alloys by micro-arc discharge treatment,” Surface and Coatings Technology, vol. 86-87, pp. 516-521, 1996.
[8] W. Xue et al., “Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy,” J. Am. Ceram. Soc., vol. 81, pp. 1365-68, 1998.
[9] X. Lu et al., “Insights into plasma electrolytic oxidation treatment with particle addition,” Corrosion Science, vol. 101, pp. 201-207, 2015.
[10] L. O. Snizhko et al., “Excessive oxygen evolution during plasma electrolytic oxidation of aluminium,” Thin Solid Films, vol. 516, no. 2-4, pp. 460-464, 2007.
[11] F. Jaspard-Mécuson et al., “Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process,” Surface and Coatings Technology, vol. 201, no. 21, pp. 8677-8682, 2007.
[12] A. L. Yerokhin et al., “Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process,” Surface and Coatings Technology, vol. 199, no. 2-3, pp. 150-157, 2005.
[13] A. L. Yerokhin et al., “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti᎐6Al᎐4V alloy,” Surface and Coatings Technology, vol. 130, pp. 195-206, 2000.
[14] V. Dehnavi et al., “Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior,” Surface and Coatings Technology, vol. 226, pp. 100-107, 2013.
[15] D. Ma et al., “Preparation of high absorbance and high emittance coatings on 6061 aluminum alloy with a pre-deposition method by plasma electrolytic oxidation,” Applied Surface Science, vol. 389, pp. 874-881, 2016.
[16] E. V. Koroleva et al., “Surface morphological changes of aluminium alloys in alkaline solution: effect of second phase material,” Corrosion Science, vol. 41, pp. 1475-1495, 1999.
[17] X. Li, and B. L. Luan, “Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy,” Materials Letters, vol. 86, pp. 88-91, 2012.
[18] D. Zhang et al., “A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy,” Surface and Coatings Technology, vol. 236, pp. 52-57, 2013.
[19] A. R. (Nyachhyon), K. Manandhar, and R. R. Pradhananga, “Mott-Schottky Analysis of Laboratory Prepared Ag2 Membrane Electrode
S-AgI,” J. Nepal Chem. Soc., vol. 28, 2011.
[20] H. Duan et al., “Transient Voltage-Current Characteristics: New Insights into Plasma Electrolytic Oxidation Process of Aluminium Alloy,” Int. J. Electrochem. Sci., vol. 7, pp. 7619-7630, 2012.
[21] E. McCafferty, “Semiconductor aspects of the passive oxide
film on aluminum as modified by surface alloying,” Corrosion Science, vol. 45, 2003.
[22] M. Metikosˇ-Hukovic´, S. Omanovic´, and A. Jukic´, “Impedance spectroscopy of semiconducting films on tin electrodes,” Electrochimica Acta, vol. 45, pp. 977–986, 1999.
[23] H. Duan, C. Yan, and F. Wang, “Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution,” Electrochimica Acta, vol. 52, no. 15, pp. 5002-5009, 2007.
[24] Y. Guan, Y. Xia, and G. Li, “Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO,” Surface and Coatings Technology, vol. 202, no. 19, pp. 4602-4612, 2008.
[25] O. E. Linarez Pérez et al., “Characterization of the anodic growth and dissolution of oxide films on valve metals,” Electrochemistry Communications, vol. 10, no. 3, pp. 433-437, 2008.
[26] C.-K. Lee et al., “Comparative study of electronic structures and dielectric properties of alumina polymorphs by first-principles methods,” Physical Review B, vol. 76, no. 24, 2007.
[27] Y.-l. Cheng et al., “High growth rate, wear resistant coatings on an Al–Cu–Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes,” Surface and Coatings Technology, vol. 269, pp. 74-82, 2015.

QR CODE