簡易檢索 / 詳目顯示

研究生: 陳伯彥
PO-YEN Chen
論文名稱: 新型諧振被動開關模組應用於低漣波 與可調光LED 驅動器
Novel RPSM Integrated LED Drivers with Low Output Ripple and Dimming Capability
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉益華
Yi-Hua Liu
羅一峰 
Yi-Feng Luo
潘晴財
Ching-Tsai Pan
李清然
Qing-Lan Lee
邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 54
中文關鍵詞: 諧振被動開關模組LED 驅動器被動式功率因數校正
外文關鍵詞: passive switch module, passive power factor correction
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對LED 應用提出一新型諧振被動開關模組(Resonant
Passive Switch Module, RPSM)電路,利用諧振電路中的諧振電容與電
感協助電路動作,可在不需要外加主動開關的情況下,透過電路的諧
振來作動二極體之開與關以改變電路結構,進而實現工作模式的切
換,達到低輸出漣波、高效率以及延長電路使用壽命的效益。
本論文首先解析RPSM 電路的動作原理,透過模型推導以及數
學分析說明其工作模式、操作原理以及電路特性,並提供電路參數設
計參考依據。接著將RPSM 電路應用於被動式功率因數校正(Power
Factor Correction, PFC)設計,利用RPSM 的動作改變輸入電流起始與
結束之波形,進而降低其高次諧波,以提升電路之功率因數,並改善
輸出電流之二倍線頻漣波。此外,本論文亦將RPSM 電路應用於降升
壓電路,在不增加主動開關、不影響電路效率的前提下,使降升壓電
路在操作於不連續導通模式時其輸出電流仍可保持連續,藉以降低輸
出電流漣波。最後,本文以實際建構完成的雛型電路驗證所提電路的
功能與改善效果。實測結果證明,RPSM 電路利用電容與電感的諧振,
使二極體能進行開、關的動作進而達到切換電路結構的作用,可以增
加額外的工作模式,提升電路性能,並可簡化電路的控制架構與成本。


A novel circuit called resonant passive switch module (RPSM) is
proposed, the presented circuit is then integrated into LED drivers to
enhance their performance. No controlled active switch, electrolytic
capacitors, and auxiliary power supply are required in the proposed LED
driver. The advantages of the proposed driver include long lifetime, high
efficiency and recyclability.
The operation principles of RPSM circuit are first analyzed.
Theoretical analysis of the proposed LED driver is made, and some design
guidelines are provided. The RPSM circuit is applied to the passive power
factor correction (PFC) circuit, and the waveform of the input current is
changed by its operation so that the higher order harmonics can be reduced.
Thus, both the power factor and double line frequency ripple of the output
current can be improved. In addition, the RPSM circuit is also applied to
the buck-boost circuit. No additional active switch is needed, and the
efficiency is not affected. In order to lower the output current ripple, the
buck-boost circuit is operated in discontinuous mode. A prototype system
of 50W rating is also constructed, and experimental results confirm the
validity of the proposed LED driver. It can be seen that the resonance of
the RPSM circuit is realized by the capacitor and inductor, and the diode
can be operated properly; therefore, the structure can be changed. The
performance of the circuit can be improved by additional operation modes,
and the control is able to be simplified.

目 錄 摘要 ............................................................................................................. I Abstract ...................................................................................................... II 誌謝 ........................................................................................................... III 目錄 .......................................................................................................... IV 圖目錄 ...................................................................................................... VI 表目錄 .................................................................................................... VIII 第一章 緒論............................................................................................... 1 1.1 研究背景與動機 ......................................................................... 2 1.2 文獻探討 ..................................................................................... 3 1.3 諧振被動開關模組簡介 ............................................................. 5 1.4 論文大綱 ..................................................................................... 7 第二章 具功率因數校正之長壽命被動式LED 驅動器 ........................ 8 2.1 所提電路架構動作說明 ............................................................. 8 2.2 所提LED 驅動器之數學模型分析 ......................................... 12 2.3 所提LED 驅動器之設計準則.................................................. 15 2.4 小結............................................................................................ 18 第三章 新型可調光MR16 LED 驅動器 ............................................... 20 3.1 所提直流-直流轉換器架構和操作原理說明 .......................... 20 3.2 所提直流-直流轉換器的數學模型分析 .................................. 25 3.3 所提轉換器之設計指南 ........................................................... 31 3.4 小結............................................................................................ 33 第四章 模擬與實驗結果 ........................................................................ 35 4.1 所提被動式LED 驅動器模擬與實驗結果 ............................. 35 V 4.2 所提MR16 LED 驅動器模擬與實驗結果 .............................. 41 第五章 結論與未來展望 ........................................................................ 49 5.1 結論............................................................................................ 49 5.2 未來展望 ................................................................................... 51 參考文獻 ................................................................................................... 52 附錄 ........................................................................................................... 54

參考文獻
[1] J. Garcia, M. A. Dalla-Costa, J. Cardesin, J. M. Alonso, and M. Rico-Secades, “Dimming of highbrightness
LEDs by means of luminous flux thermal estimation,” IEEE Trans. Power Electron.,
vol. 24, no. 2, pp. 1107–1104, Apr. 2009.
[2] S. Beczkowski and S. Munk-Nielsen, “Led spectral and power characteristics under hybrid
PWM/AM dimming strategy,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 12–16, 2010,
pp. 731–735. DOI: 10.1109/ECCE.2010.5617930.
[3] Jorge Garcia, Antonio J, Calleja, Emilio L, Corominas, David Gacio, Lidia Campa and Ramón E.
Díaz, “Integrated Off-Line Ballast for High Brightness LEDs with Dimming Capability,” Circuits
and Systems., Vol. 2, No. 4, pp. 338–351, Oct. 2011.
[4] H.-J. Chiu, Y.-K. Lo, J.-T. Chen, S.-J. Cheng, C.-Y. Lin and S.-C. Mou , “A High-Efficiency
Dimmable LED Driver for Low-Power Lighting Applications,” IEEE Trans. Industrial Electron.,
vol. 57, no. 2, pp. 735–743, Jul 2011
[5] Wensong Yu, Jih-Sheng Lai, Hongbo Ma and Cong Zheng, “High-Efficiency DC–DC Converter
With Twin Bus for Dimmable LED Lighting,” IEEE Trans. Power Electron., vol. 26, no. 8, pp.
2095–2100, Aug. 2011.
[6] Chin-Sien Moo, Yu-Jen Chen, and Wen-Ching Yang, “An Efficient Driver for Dimmable LED
Lighting,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4613–4618, Nov. 2012.
[7] Y. Fang, S.-H. Wong, and L. Hok-Sun Ling, “A power converter with pulse-level-modulation
control for driving high brightness LEDs,” in Proc. 24th Annu. IEEE APEC , Feb. 15–19, 2009,
pp. 577–581.
[8] H. J. Chiu, H. M. Huang, H. T. Yang, S. J. Cheng. An improved single-stage Flyback PFC
converter for high-luminance lighting LED lamps, Int. J. Circuit Theory Appl 2008; 36(2): 205-
210.
[9] H. J. Chiu, Y. K. Lo, S. J. Cheng, Y. C. Yan, H. C. Lee, K. H. Wu, C. Y. Lin, S. S. Ho, M. H.
Tseng, F. H. Huang. A single-stage LED lamp driver with low DC bus voltage for general lighting
applications, Int. J. Circuit Theory Appl 2011; 39(11): 1161-1175.
[10] H. L. Cheng, Y. C. Hsieh, C. S. Lin, A novel single-stage high-power-factor ac/dc converter
featuring high circuit efficiency, IEEE Transactions on Industrial Electronics 2011; 58(2): 524–
532.
[11] J. Garcia, A. J. Calleja, E. L. Corominas, D. Gacio, and J. Ribas, “Electronic driver without
electrolytic capacitor for dimming High Brightness LEDs,” in Proc. 35th Annu. Conf. IEEE Ind.
Electron., Porto, Portugal, 2009, pp. 3518–3523.
[12] B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak-to-average ratio of LED
current for electrolytic capacitor-less ac–dc drivers,” IEEE Trans. Power Electron., Vol. 25, No.
3, pp. 592–601, Mar. 2010.
[13] S.Y. Hui, Si Nan Li, Xue Hui Tao, Wu Chen and Ng, W.M, “A Novel Passive Offline LED Driver
With Long Lifetime ,” IEEE Trans. Power Electron., vol. 5, no. 10, pp. 2665 - 2672, Oct 2010.
[14] C.S. Moo, C.R. Lee, I.S. Tsai, “Characterizing and designing LC filters by contourmaps,” in Proc.
Power Conversion Conference. (PCC Osaka), 2002, pp. 1429–1434.
[15] K. K. Sum, “Improved valley-fill passive current shaper,” in Proc. Power Syst. World, 1997, pp.
1–8.
[16] Ching-Tsai Pan, P. Y. Chen, Ching-Ran Lee, Yu-Hsiang Lee, and Wen-Tien Tsai, “Novel Single
Stage Passive Power Factor Corrector for LED Street Light Driver,” 11th Taiwan Power
Electronics conference, 2012.
[17] B. B. Wang, X. B. Ruan, K. Yao and M. Xu, “A Method of Reducing the Peak-to-Average Ratio
of LED Current for Electrolytic Capacitor-Less AC–DC Drivers,” IEEE Trans. Power Electron.,
vol. 25, no. 3, pp. 592–601, Mar. 2010.
[18] Datasheet of Cree® XLamp® XP-G LEDs. (2012). [Online]. Available:
[19] http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/D
52
ata%20and%20Binning/XLampXPG.pdf.
[20] Energy Star, Program requirements for integral LED lamps partner commitments, Eligible
Organizations: Manufacturers and Distributors of Integral LED Lamps 2010.
[21] Energy Star, Program requirements for solid-state lighting luminaires, Eligibility Criteria –
Version 1.1, 2009.
[22] Ching-Tsai Pan, Po-Yen Chen, Ching-Ran Lee, Jing-Hao Wang and Wen-Tien Tsai, “Novel Low
Ripple DC Converter for LED Driver with Wireless Digital Dimming Control,” Proceedings of
the 33th Symposium on Electrical Power Engineering, pp. 1175-1182, 2012.
[23] D. C. Hamill and P. T. Krein, “A ‘zero’ ripple technique applicable to any DC converter,” in Proc.
30th Annu. IEEE Power Electron. Spec. Conf. (PESC), Jun. 27–Jul. 1, 1999, vol. 2, pp. 1165–
1171.
[24] M. J. Schutten, R. L. Steigerwald, and J. A. Sabate, “Ripple current cancellation circuit,” in Proc.
18th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), Feb. 9–13, 2003, vol. 1, pp. 464–
470.
[25] P. T. Krein and R. S. Balog, “Cost-effective hundred-year life for single phase inverters and
rectifiers in solar and LED lighting applications based on minimum capacitance requirements and
a ripple power port,” in Proc. Appl. Power Electron. Conf. Expo. (APEC), Feb. 2009, pp. 620 –
625.
[26] J. Lam and K. Praveen, “A modified valley fill electronic ballast having a current source resonant
inverter with improved line-current total harmonic distortion (THD), high power factor, and low
lamp crest factor,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1147–1159, Mar. 2008.
[27] Hongbo Ma, Jih-Sheng Lai, Quanyuan Feng, Wensong Yu, Cong Zheng, and Zheng Zhao, “A
Novel Valley-Fill SEPIC-derived Power Supply Without Electrolytic Capacitors for LED
Lighting Application,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.
[28] J. Y. Tsao, “Solid-state lighting: Lamps, chips, and materials for tomorrow,” IEEE Circuits
Devices Mag., vol. 20, no. 3, pp. 28–37, May/Jun.2004.
[29] M. Wendt, and J. W. Andriesse, “LEDs in real lighting applications: from niche markets to general
lighting,” in Proc. IEEE Ind. Appl. Soc., 2006, pp. 2601–2603.
[30] J. Garcia, Antonio J. Calleja, Emilio L´opez Corominas, David Gacio Vaquero, and Lidia
Campa, “Interleaved Buck Converter for Fast PWM Dimming of High-Brightness LEDs,” IEEE
Trans. Power Electron., vol. 26, no. 9, pp. 2627–2636, Sep. 2011.
[31] J. Garcia, A. J. Calleja, E. L. Corominas, D. Gacio, and L. Campa, “Low ripple interleaved
converter for fast PWM dimming of power LEDs,” in Proc. IEEE Ind. Symp. Ind. Electron., Bari,
Italy, 4–7 Jul. 2010, pp. 915–920.
[32] Datasheet of Osram Golden DRAGON High Power LEDS. (2010). [Online]. Available:
http://catalog.osramos.
com/catalogue/catalogue.do;jsessionid=77FD76CECE0BA6E9BCF2C5AA5A2F122A?act=d
ownloadFile&favOid=0200000300025ff8000100b6.
[33] Electromagnetic Compatibility (EMC)—Part 3-2: Limits for Harmonic Current Emissions
(Equipment Input Current ≤16 A per Phase), Edition 2.1, IEC Standard 61000-3-2 2001.
[34] Energy Star, “Program Requirements for Solid-State Lighting Luminaires,” Eligibility Criteria –
Version 1.1, 2009.
[35] Ned Mohan, Tore M. Undeland, and William P. Robbins, Power Electronics: Converters,
Applications, and Design, 3nd ed. John Wiley & Sons, Inc. New York, 2003.

無法下載圖示 全文公開日期 2024/02/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE