簡易檢索 / 詳目顯示

研究生: 吳佳銘
Chia-Ming Wu
論文名稱: 含再生綠建材低噪音鋪面績效評估及噪音預測模式建立之研究
Performance Evaluation and Acoustic Prediction Model Development of Low Noise Pavements with Recycling GreenBuilding Materials
指導教授: 沈得縣
Der-Hsien Shen
口試委員: 周家蓓
none
陳建旭
none
蘇南
none
黃兆龍
none
張大鵬
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 370
中文關鍵詞: 低噪音鋪面粒料堆積噪音預測模式輪胎鋪面噪音吸音係數
外文關鍵詞: Low noise pavement, Aggregate packing, Noise prediction model, Tire/pavement noise, Sound absorption
相關次數: 點閱:228下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內隨著汽機車等交通工具數量日益增加,鋪面行車噪音已嚴重影響市中心地區及道路沿線居民之生活品質。本研究係經由鋪面現地實車噪音量測、試驗室鋪面試體績效評估與吸音係數量測及交通噪音軟體模擬等方式探討柔性鋪面行車噪音相關問題。本研究首先針對鋪面材料種類、鋪面型式及車輛管制方式等對柔性鋪面行車減噪成效之影響進行分析,然後利用灰色系統理論及人工智慧等方法發展噪音預測模式;最後彙整研究成果,擬定行車噪音減輕對策及建立行車噪音與鋪面材料聲學特性關係之預測模式。本研究之研究結果顯示:
    在鋪面現地實車噪音量測方面;輪胎鋪面噪音之峯值頻率介於800-1,200Hz間,且聲強及聲壓均隨車速增加而增加,車速每遞增10km/hr則聲強平均增加量為2.1dB(A),車速每遞增10km/hr則聲壓平均增加量為1.8dB(A),在本研究所量測之鋪面中,最安靜之柔性鋪面為OGAC,最嘈雜之柔性鋪面為SMA。就整體而言,車輛、車速、輪胎及鋪面型式等均會影響行車噪音之大小。依交通噪音軟體模擬與評估結果顯示;可採用管制重型車車速及管制車流量而減輕行車噪音,都會區若採用管制重型車車速及鋪設柔性減噪鋪面,則其行車噪音減輕之效果較裝設隔音牆佳。在鋪面試體績效評估與聲學特性分析方面;柔性鋪面可採用鋪面孔隙化、鋪面紋理粗質化、鋪面柔性化及孔隙性鋪面雙層化等方式,而達成減輕行車噪音之目的。
    就含再生綠建材之低噪音鋪面試體而言,橡膠瀝青因具柔性而能夠增加試體之破壞韌性,進而可提高PAC之力學強度,但試體在老化後具脆性,磨耗百分比增加幅度較大。輕質骨材及煉鋼爐碴可使瀝青滲入粒料內部而形成良好之界面結合效果,且煉鋼爐碴及輕質骨材均為多稜角之粒料可提供互鎖及內部摩擦效應,因此PAC之力學強度隨取代量增加而增加,惟輕質骨材為親水性材料會降低瀝青混合料抵抗浸水剝脫之能力。輕質骨材及煉鋼爐碴取代天然粒料有助於提昇試體之吸音係數,且吸音係數峯值隨其含量增加而略微提昇。依據統計分析結果顯示各試驗組別之鋪面績效及聲學特性等試驗結果之平均數存有顯著差異;依據灰關聯序排列結果顯示以煉鋼爐碴全部取代天然粒料拌製之柔性低噪音鋪面為最佳方案。
    依行車噪音與鋪面材料聲學特性關係之預測模式建模結果顯示;灰色行車噪音預測模式及類神經模糊鋪面材料聲學特性預測模式之殘差值及均方根誤差均相當小,且量測值與預測值均具有高度相關性,因此驗證本研究所建立之噪音預測模式用以預測路邊聲壓及鋪面材料吸音係數具有高度之準確性。


    Because of significant increase in the number of vehicles, traffic noise pollution has become a serious environmental problem, particularly, in urban areas where with higher vehicular densities than that in rural areas. The objective of this research was to investigate the in situ tire/pavement noise and sound absorption coefficient of specimen and to develop their prediction models by using grey theory and artificial intelligence approach. The simulation software, Cadna-A, used for a noise prediction module was conducted to evaluate the influence of heavy vehicle on traffic noise. To assess the performance of noise mitigation, the factors relating to tire/pavement noise such as types and materials of the flexible pavements are discussed. Based on the analytical and experimental investigations presented in this dissertation, the major findings are as follows.
    Using the methods both Coast-By and Sound Intensity, different types of the freeway surfaces including dense graded, porous graded, open graded and gap graded (SMA) within Taiwan have been measured. The measurement results show that the maximum tire/road noise occurs between 800Hz and 1200Hz and the measured noise increased with increasing cruising velocity. When the vehicle accelerated for every 10km/hr, the average sound intensity and sound pressure increased about 2.1dB(A) and 1.8 dB(A), respectively. According to the measurement results of this study, the SMA pavement has louder noise than the others and the OGAC pavement has the quietest. The traffic noise is affected by vehicle types, vehicle speeds, types of tires and types of flexible pavements.
    Simulation results show that traffic noise can also be reduced considerably by lowering the speed limit of heavy vehicles, as well as by controlling volumes of traffic flow. In general, limiting the speeds of heavy vehicles and utilizing low-noise flexible pavements are more effective than just setting up noise barriers in urban areas as far as traffic noise mitigation is concerned.
    The experimental test results show that pavement materials with porosity, macro-texture, flexibility and double-layer can achieve the object of noise mitigation. The mixtures with recycling green building material (RGBM) enhanced mechanical and sound absorption properties due to its characteristics of angularity and porosity. Higher percentage of lightweight aggregate (LA) resulted in poorer stripping resistance that may be caused by LA hydrophilic nature. The asphalt rubber has enhanced mechanical properties of porous asphalt but the abrasion loss rate increased after the specimen aged. Micrograph shows that the rough surface pores and surface texture of RGBM have a strong bond characteristic and an excellent interfacial zone for asphalt binder. Statistical analyzed results conclude that the RGBM replacement percentage and types of asphalt binder in this study have a significant effect on performances of porous asphalt at 95% confidence level.
    The noise prediction results show that the predicted values are very close to the experimental values and have a high statistical correlation. The evaluation results also confirming the models are useful and accurate.

    中文摘要 I 英文摘要 III 誌 謝V 目 錄VII 表 目 錄XIII 圖 目 錄XVIII 符 號 說 明XXVII 第一章 緒論1 1-1 研究動機1 1-2 研究目的3 1-3 研究範圍4 1-4 研究方法及流程6 第二章 文獻回顧 10 2-1 行車噪音防制與量測10 2-1-1 道路行車噪音之產生 10 2-1-2 道路行車噪音管制標準 12 2-1-2-1 台灣12 2-1-2-2 歐洲、美國及日本 14 2-1-3 噪音量測基礎16 2-1-4 聲強法基本定義及理論 18 2-1-5 鋪面行車噪音產生機理 20 2-1-6 影響鋪面行車噪音之因素25 2-1-6-1 輪胎構造 25 2-1-6-2 鋪面型式 25 2-1-6-3 鋪面材料 26 2-1-7 歐洲國家降低鋪面行車噪音之經驗36 2-1-7-1 丹麥36 2-1-7-2 荷蘭38 2-1-7-3 法國39 2-1-7-4 義大利41 2-1-7-5 英國42 2-1-8 輪胎鋪面噪音量測之相關規範 45 2-1-9 柔性鋪面減噪策略50 2-1-10 行車噪音預測模式 52 2-2 再生綠建材在鋪面工程之應用54 2-2-1 綠建材定義 54 2-2-2 再生綠建材 55 2-2-3 輕質骨材55 2-2-3-1 輕質骨材種類55 2-2-3-2 輕質骨材基本性質 56 2-2-3-3 輕質骨材製程57 2-2-3-4 輕質骨材在鋪面工程應用之情形57 2-2-4 煉鋼爐碴58 2-2-4-1 煉鋼爐碴來源與成份 58 2-2-4-2 煉鋼爐碴礦物組成與物理性質 60 2-2-4-3 煉鋼爐碴安定化技術 60 2-2-4-4 煉鋼爐碴在鋪面工程應用之情形62 2-3 瀝青混凝土粒料堆積65 2-3-1 瀝青混凝土粒料級配 65 2-3-2 粒料堆積對瀝青混凝土績效之影響66 2-3-3 多孔隙瀝青混凝土粒料堆積配合設計方法 68 第三章 灰色系統理論與人工智慧70 3-1 灰色系統理論 70 3-1-1 灰生成71 3-1-2 灰關聯分析 71 3-1-2-1 基本條件 72 3-1-2-2 運算方法 73 3-1-3 灰預測模式 75 3-1-3-1 GM(1,2)建模方法 76 3-1-3-2 殘差修正法78 3-2 人工智慧79 3-2-1 模糊理論80 3-2-1-1 模糊集合 80 3-2-1-2 模糊集合表示方式 81 3-2-1-3 模糊集合基本運算方法83 3-2-1-4 模糊邏輯推論84 3-2-2 類神經網路 86 3-2-2-1 神經元數學模型86 3-2-2-2 類神經網路之學習 87 3-2-2-3 倒傳遞類神經網路演算法88 3-2-2-4 類神經模糊系統89 第四章 鋪面現地實車噪音量測與分析 92 4-1 鋪面現地試驗計畫92 4-1-1 鋪面現地試驗與實車噪音量測之路段93 4-1-2 鋪面現地試驗項目95 4-2 實車噪音量測計畫100 4-2-1 量測方法與儀器設備 100 4-2-2 試驗車及輪胎103 4-3 鋪面現地試驗結果分析 105 4-3-1 國道三號關西段石膠泥瀝青混凝土鋪面 105 4-3-2 國道三號關西段多孔隙瀝青混凝土鋪面 105 4-3-3 國道三號林邊段開放級配瀝青混凝土鋪面 106 4-3-4 國道三號林邊段高架橋下方密級配瀝青混凝土鋪面 106 4-4 鋪面現地實車噪音量測與分析107 4-4-1 滑行通過法與聲強法之關係107 4-4-2 輪胎種類對行車噪音之影響113 4-4-3 車輛種類對行車噪音之影響116 4-4-4 不同車速對行車噪音之影響119 4-4-5 鋪面型式對行車噪音之影響121 4-5 小結 125 第五章 鋪面績效評估與聲學特性分析 127 5-1 鋪面材料與試驗變數129 5-1-1 試驗材料129 5-1-2 試驗變數129 5-1-3 試驗組別符號說明131 5-2 鋪面材料物化性質試驗計畫131 5-2-1 橡膠瀝青混煉方法131 5-2-2 廢輪胎橡膠粉末基本物性試驗 133 5-2-3 瀝青基本物性試驗135 5-2-4 粒料基本物性試驗138 5-2-5 粒料化學成分試驗142 5-3 瀝青混凝土配合設計方法 143 5-3-1 馬歇爾配合設計方法 143 5-3-2 日本排水性鋪裝配合設計方法 143 5-3-3 堆積級配混合料配合設計方法 144 5-3-4 NCHRP石膠泥瀝青混凝土配合設計方法 146 5-3-5 FHWA開放級配瀝青混凝土配合設計方法 147 5-4 鋪面績效試驗計畫152 5-4-1 力學性質試驗152 5-4-2 耐久性質試驗154 5-4-3 機能性質試驗156 5-5 聲學特性試驗計畫158 5-6 微觀結構觀測計畫160 5-7 鋪面材料物化性質分析 161 5-7-1 廢輪胎橡膠粉末161 5-7-2 瀝青材料162 5-7-3 粒料166 5-8 瀝青混凝土配合設計結果分析168 5-9 鋪面績效評估 177 5-9-1 力學性質177 5-9-2 耐久性質186 5-9-3 機能性質192 5-10 聲學特性分析 197 5-10-1 未含再生綠建材低噪音鋪面 197 5-10-2 含再生綠建材低噪音鋪面208 5-11 微觀結構分析 227 5-12 統計分析229 5-13 灰關聯分析 238 5-13-1 灰關聯分析步驟238 5-13-2 灰關聯分析結果240 5-14 小結258 第六章 交通噪音軟體模擬與評估263 6-1 Cadna-A模擬軟體263 6-2 輸入變數與假設條件266 6-3 車速模擬結果分析267 6-4 距離模擬結果分析268 6-5 鋪面試體吸音模擬結果分析270 6-6 混合車流模擬結果分析 271 6-7 小結 277 第七章 行車噪音與鋪面材料聲學特性預測模式 279 7-1 灰預測279 7-1-1 行車噪音預測模式建立 280 7-1-2 行車噪音預測結果285 7-2 類神經模糊292 7-2-1 鋪面材料聲學特性預測模式建立 292 7-2-2 鋪面材料聲學特性預測結果298 7-3 小結 310 第八章 結論與建議 312 8-1 結論 312 8-1-1 鋪面現地實車噪音量測與分析 312 8-1-2 鋪面績效評估313 8-1-3 低噪音鋪面聲學特性分析315 8-1-4 交通噪音軟體模擬與評估317 8-1-5 行車噪音與鋪面材料聲學特性預測模式 318 8-2 建議 320 參考文獻 321 附錄一 鋪面現地試驗結果 329 附錄二 瀝青混凝土配合設計結果338 附錄三 單因子變異數分析結果362 作者簡介 368

    1.余忠和、郭宏亮、徐淵靜,「噪音陳情案件解析及處理策略訂定」,行政院環境保護署(2007)。
    2.Nelson, P.M., and Phillips, S.M., “Quieter Road Surfaces,” Transport Research Laboratory, TRL Annual Review, United Kingdom (1997).
    3.Camomilla, G., Malgarini, M., and Gervasio, S., “Sound Absorption and Winter Performance of Porous Asphalt Pavement,” Transportation Research Record, No. 1265, pp. 1-8 (1990).
    4.Donavan, P.R., Schumacher, R.F., and Scott, J.R., “Assessment of Tire/pavement Interaction Noise Under Vehicle Pass-by Test Conditions Using Sound Intensity Measurement Methods,” Journal of the Acoustical Society of America, Vol. 103, No. 5, pp. 291-299 (1998).
    5.經濟部礦業司,「93年土石生產量值現況」,土石統計(2004)。
    6.徐淵靜,「道路交通環境工程」,國立交通大學交通運輸研究所(1992)。
    7.行政院環境保護署,「噪音管制法」。
    8.行政院環境保護署,「噪音管制法施行細則」。
    9.行政院環境保護署,「環境音量標準」。
    10.日本環境部,「騷音規制法」。
    11.許榮均、王偉輝,「陸上運輸系統噪音、振動特性調查及管制措施之研究(三)」,行政院環境保護署(2007)。
    12.白明憲,「工程聲學」,全華科技圖書(2006)。
    13.Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V., “Fundamentals of Acoustics,” John-Wiley, New York (1982).
    14.Bennert, T., Hanson, D., Maher, A., and Vitillo, N., “Influence of Pavement Surface Type on Tire/Pavement Generated Noise,” Journal of Testing and Evaluation, Vol. 33, No. 2, pp. 94-100 (2005).
    15.Robert, O.R., Robert, J.B., Ulf, S., Eric. P.M., “The Little Book of Quieter Pavements,” Federal Highway Administration, Report No. FHWA-IF-08-004 (2007).
    16.陳豫滎、崔金童,「機動車輛噪音防制技術研究(二)」,行政院環境保護署(2003)。
    17.正新橡膠工業股份有限公司:輪胎須知。網頁擷取資料,網址:
    http://www.cst.com.tw/
    18.Iwao, K., Yamazaki. I., “A Study on the Mechanism of Tire/road Noise,” JSAE Review, Vol. 17, No. 5, pp. 139-144 (1996).
    19.黃敏祥、陳豫滎,「機配合歐盟法規調和趨勢研訂我國機動車輛噪音管制策略專案工作計畫」,行政院環境保護署(2006)。
    20.Public Roads Magazine, “Alternative Pavement Surfaces May Reduce Roadway Noise - Along the Road,” May-June, 2003. Available on world-wide web:
    http://www.findarticles.com/
    21.National Asphalt Pavement Association (NAPA) “Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses,” NAPA (2002).
    22.Federal Highway Administration (FHWA), “Materials Notebook: Open Graded Friction Courses,” FHWA (1990).
    23.Joubert, R.M., “Durable Open-Graded Mixes Enhance Safety and Reduce Noise,” Asphalt Magazine, Vol. 6, No. 1, pp. 1-2 (1992).
    24.Wayson, R.L., “Relationship between Pavement Surface Texture and Highway Traffic Noise,” NCHRP Synthesis of Highway Practice 268, Transportation Research Board, National Research Council (1998).
    25.Nelson, P.M., “Designing Porous Road Surfaces to Reduce Traffic Noise,” Transport Research Laboratory, Annual Review (1994).
    26.Isenring, T., Koester, H. and Scazziga, I., “Experiences with Porous Asphalt in Switzerland,” Transportation Research Record, No. 1265, pp.41-53 (1990).
    27.Berengier, M., Hamet, J.F., and Bar, P., “Acoustical Properties of Porous Asphalts Theoretical and Environmental Aspects,” Transportation Research Record, No. 1265, pp. 9-24 (1990).
    28.Texas Department of Transportation (TxDOT), “Use of PFC to Improve the Performance of CRCP,” TxDOT (2004). Available on world-wide web:
    http://www.dot.state.tx.us/DES/specs/2004/04stsp1.htm
    29.Meiarashi, S., “Researches on Low Noise Pavement in Japan,” Journal of the Acoustical Society of Japan, Vol. 20, No. 1, pp. 19-27 (1999).
    30.並河良治、森悌司、小柴剛,「排水性舗装の騒音低減効果に関する調査」,日本交通省國土技術政策總合研究所。網頁擷取資料,網址:
    http://www.nilim.go.jp/engineer/index.html
    31.Hanson, D.I., James, R.S., and NeSmith C., “Tire/Pavement Noise Study,” National Center for Asphalt Technology (NCAT), Report 04-02 (2004).
    32.Troutbeck, R. and Kennedy, C., “Review of the Use of Stone Mastic Asphalt (SMA) Surfacings by the Queensland Department of Main Roads,” Queensland Department of Main Roads (2005).
    33.Sacramento County, DERA and Bollard & Brennan, Inc., “Report on the Status of Rubberized Asphalt Traffic Noise Reduction in Sacramento County,” Sacramento County (1999).
    34.Meiarashi, S., “Researches on Low Noise Pavement in Japan,” Journal of the Acoustical Society of Japan, Vol. 20, No. 1, pp. 19-27 (1999).
    35.David, G., et al., “Quiet Pavement Systems in Europe,” Federal Highway Administration (FHWA), Report No. FHWA-PL-05-011 (2005).
    36.Kragh, J., “Traffic Noise at Two-Layer Porous Asphalt,” Danish Road Institute Technical note 30 (2005).
    37.陳式毅、邱垂德,「新進道路工程材料」,道路新進技術與應用學術研討會論文集,財團法人台灣營建研究院,第163-189頁。(1999)。
    38.ISO 13325, “Tyres -- Coast-by methods for measurement of tyre-to-road sound emission,” ISO (2003).
    39.NFS 31-119-2, “Acoustique : Caractérisation in Situ Des Qualitités Acoustiques Des Revetements De Chaussées – Mesurage Acoustiques Au Passage – Procédure – Véhicules Maitrisés”, NFS (2000).
    40.ISO 11819-1, “Acoustics -- Measurement of the Influence of Road Surfaces on Traffic Noise -- Part 1: Statistical Pass-By Method,” ISO (1997).
    41.ISO 11819-2, “Acoustics - Method for measuring the influence of road surfaces on traffic noise - Part 2: The close-proximity method,” ISO (1997).
    42.ECE/GRB: “Draft Regulation: Tyre/Road Noise Emission,” TRANS/SC1/WP29/GRB/R.100, United Nations Economic Commission for Europe, Genève. (1990).
    43.沈得縣,徐茂濱,劉明仁,「國道路面行車噪音減輕對策之研究(第一期)」,交通部台灣區國道新建工程局(2005)。
    44.沈得縣,徐茂濱,劉明仁,「國道路面行車噪音減輕對策之研究(第二期)」,交通部台灣區國道新建工程局(2006)。
    45.王世傑,「高速公路交通噪音模式之研究」,逢甲大學交通工程與管理學系碩士論文(2007)。
    46.江哲銘,「綠建材標章制度建立與推廣」,財團法人中華建築研究中心(2003)。
    47.雷揚中,「焚化爐底碴應用於道路工程之研究」,國立中央大學土木工程系碩士論文(2004)。
    48.蔡昆城,「淤泥再生輕質骨材混凝土工程性質之研究」,國立台灣科技大學營建工程系碩士論文(2001)。
    49.洪書玲,「輕質骨材與水泥砂漿界面之微結構特性及分析」,國立成功大學土木工程學系碩士論文(2003)。
    50.李隆盛,「水庫淤泥輕質骨材之品質驗證」,水庫淤泥輕質骨材混凝土產製及規範研討會(2003)。
    51.陳豪吉,楊宗岳,「輕質骨材混凝土應用於公路工程構造之可行性探討」,台灣公路工程,第29卷,第6期(2002)。
    52.Mallick, R.B., Hooper, F.P., O’Brien, S., and Kashi, M., “Evaluation of Use of Synthetic Lightweight Aggregate in Hot-Mix Asphalt,” Transportation Research Record, No. 1891, pp. 1-7 (2004).
    53.Sarker, S.L., “Durability of Lightweight Aggregate Pavement,” Concrete International, Vol. 21, No.5, pp.32-36 (1999).
    54.鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,國立中央大學土木工程系碩士論文(2000)。
    55.Rebecchi, J., Mangan, D., Nicolls, M., and Bethune, J., “Stone Mastic Asphalt-A Decade of Australian Experience,” Proceedings Conference of the Australian Road Research Board, Vol. 21, pp. 697-711 (2003).
    56.沈得縣,黃兆龍,「爐石在瀝青混凝土路面工程上應用之研究」,財團法人台灣營建研究中心(1986)。
    57.陳立,「電弧爐氧化碴為混凝土骨材之可行性研究」,國立中央大學土木工程系博士論文(2003)。
    58.周權英、黃台生,「中鋼爐石用為道路材料評估分析之研究(一)」,公路工程,第一十八卷,第八期,第23-34頁(1992)。
    59.楊貫一,「爐石資源化-水淬高爐爐石應用於水泥及混凝土之規範」,技術與訓練,第一十五卷,第六期,第1-14頁(1981)。
    60.呂秀崑、葉東榮,「試用中鋼爐石作為道路基層材料之施工報告」。
    61.伍鴻昌,「電弧爐氧化碴取代天然粒料應用於瀝青混凝土之研究」,淡江大學土木工程學系碩士論文(2004)。
    62.Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee, D.Y., and Kennedy, T.W., “Hot Mix Asphalt Materials, Mixture Design, and Construction 2/E,” NAPA Education Foundation, Lanham, Maryland (1996).
    63.Shashidhar, N., and Gopalakrishnan, K., “Evaluating the Aggregate Structure in Hot-Mix Asphalt Using Three-Dimensional Computer Modeling and Particle Packing Simulations,” Canadian Journal of Civil Engineering, Vol. 33, No. 8, pp. 945-954 (2006).
    64.王耀南,「南部骨材堆積對混凝土耐久性質之研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文(2004)。
    65.Vavrik, W.R., and Pine, W.J., “Aggregate Blending for Asphalt Bailey Method,” Transportation Research Record, No. 1798, pp. 146-153 (2002).
    66.Yahia, A.A., and Waddah, S.A., “Desidn of Maximum Density Aggregate Grading,” Construction and Building Materials, Vol. 16, pp. 495-508 (2002).
    67.Brown, E.R., Mallick, R.B., Haddock, J.E., and Bukowski J.J., “Performance of Stone Matrix Asphalt (SMA) Mixtures in the United States,” National Center for Asphalt Technology (NCAT), Report 97-01 (1997).
    68.Takahashi, T., and Partl, M.N., “Improvement of Mix Design for Porous Asphalt,” Road Materials and Pavement Design, Vol. 2, No.3, pp. 283-296 (2001).
    69.鄧聚龍,「灰色控制系統」,華中科技大學出版社(1993)。
    70.史開泉、吳國威、黃有評,「灰色信息關係論」,全華科技圖書公司(1994)。
    71.田自立,「灰色理論在預測與決策之研究」,國立成功大學機械工程系博士論文(1996)。
    72.鄧聚龍,「灰色系統理論基本方法」,華中科技大學出版社(2005)。
    73.鄧聚龍,「灰色系統理論與應用」,高立圖書公司(2003)。
    74.劉思峰、黨耀國、方志耕,「灰色系統理論及其應用」,科學出版社,中國(2005)。
    75.塭坤禮、黃宜豊、張偉哲、張廷政、游美利、賴家瑞,「灰關聯模型方法與應用」,高立圖書公司(2003)。
    76.鄧聚龍、郭洪,「灰預測模型方法與應用」,高立圖書公司(1999)。
    77.塭坤禮、黃宜豊、陳繁雄、李元秉、連志峰、賴家瑞,「灰預測原理與應用」,全華科技圖書公司(2002)。
    78.肖新平、宋中民、李峰,「灰技術基礎及其應用」,科學出版社(2005)。
    79.鄧聚龍,「灰理論基礎」,華中科技大學出版社(2003)。
    80.鄧聚龍,「灰色預測與決策」,華中科技大學出版社(1985)。
    81.Tan, C.L., and Chang, B.F., “Residual Correction Method of Fourier Series to GM(1,1) Model”, 1st. National Conference Grey Theory Application, pp. 93-101 (1996).
    82.Stuart, R., and Peter, N., "Artificial Intelligence: A Modern Approach," 2nd edition, Prentice Hall (2003).
    83.馮國臣、趙忠賢、張宏志、溫坤禮,「模糊理論基礎與應用」,新文京開發公司(2007)。
    84.王文俊,「認識Fuzzy」,全華科技圖書公司(2006)。
    85.萬絢、林明毅、陳宏杰,「模糊理論應用與實務」,儒林圖書公司(2006)。
    86.董長虹,「Matlab神經網路與應用」,國防工業出版社(2007)。
    87.王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技圖書公司(2005)。
    88.秉昱科技編譯,「模糊邏輯與類神經模糊在商業和財政的應用」,儒林圖書公司(2006)。
    89.錢維安,「模糊-類神經混合網路之颱風波浪推算模式」,國立交通大學土木工程系博士論文(2006)。
    90.陳上元,「智慧代理者理論應用在可調適性建築環境的研究-以智慧皮層為例」,國立成功大學建築系博士論文(2007)。
    91.Negnevitsky, M., “Artificial Intelligence A Guide to Intelligent Systems 2/E,” Person education (2005).
    92.Donavan, P.R., and Rymer, B., “Assessment of Highway Pavements for Tire/Road Noise Generation,” Proceedings of SAE Noise and Vibration Conference, No. 01-1536 (2003).
    93.Morgan, P., “Guidance Manual for The Implementation of Low-noise Road Surfaces,” FEHRL Report, Forum of European National Highway Research Laboratories (2006).
    94.Kandhal, P.S., and Mallick, R.B., “Design of New-generation Open-graded Friction Courses,” National Center for Asphalt Technology (NCAT), Report 99-03 (1999).
    95.Chesner, W.H., Collins, R.J., and Mackay, M.H., “User Guidelines for Waste and By-Product Materials in Pavement Construction,” Report No. FHWA-RD-97-148, Federal Highway Administration (FHWA).
    96.Florida Department of Transportation Specification, “Asphalt Rubber Binder,” Section 336 (1994).
    97.California Department of Transportation, “Asphalt Rubber Usage Guide,” Caltrans (2003).
    98.Little, D.N., and Richey, B.L., “A Mixture Design Procedure Based on the Failure Envelope Concept,” Journal of the Association of Asphalt Paving Technologists, Vol.52, pp.378-415 (1983).
    99.Hung, Y. H., “Pavement Analysis and Design 2/E,” Person Prentice Hall (2004).
    100.周家蓓、陳艾懃、陳怡先,「鋪面抗滑特性之原理與檢測技術」,中國土木水利工程學會會刊,第二十七卷,第一期(2000)。
    101.Vavrik, W.R., Fries, R.J., and Carpenter, S.H., “Effect of Flat and Elongated Coarse Aggregate on Characteristics of Gyratory Compacted Samples,” Transportation Research Record, No. 1961, pp. 28-36 (1999).
    102.Crocker, M.J., Hanson D, Li, Z., Karjatkar, R., Vissamraju, K.S., “Measurement of Acoustical and Mechanical Properties of Porous Road Surfaces and Tire and Road Noise,” Transportation Research Record, No. 1891, pp. 16–22 (2004).
    103.Nielsen, C.B., “Construction of Two-Layer Porous Pavements,” European Experience Quiet Asphalt Symposium, Danish Road Institute (2005).
    104.Morgan, P., “Guidance Manual for the Implementation of Low-Noise Road Surfaces,” FEHRL Report, Forum of European National Highway Research Laboratories, 2006.
    105.吳宗正,「變異數分析-理論與應用」,華泰書局(1999)。
    106.行政院環保署,「道路交通噪音評估模式技術規範」,行政院環保署,(2002)。

    QR CODE