簡易檢索 / 詳目顯示

研究生: 曾彥道
Yen-Tao Tseng
論文名稱: 大腸桿菌生化反應器之饋料批式控制策略
The Control Strategies of the Escherichia coli in a Fed-Batch Bioreactor
指導教授: 錢義隆
I-Lung Chien
口試委員: 黃孝平
Hsiao-Ping Huang
周宜雄
Yi-Shyong Chou
王國彬
Gow-Bin Wang
張德明
Der-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 大腸桿菌饋料批式生化反應器多重模式模糊邏輯
外文關鍵詞: Escherichia coli, fed-batch bioreactor, multimodel, fuzzy logic
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

大腸桿菌(Escherichia coli)程序除了碳源基質(carbon source substrate)外,氧亦是重要的因子或必需基質(essential substrate)。對於碳源基質與溶氧同為生物生長必需基質之饋料批次程序而言,同時維持兩個必需基質濃度於最適(optimal)值方能達到最大生物產量之要求。然而,生化程序的狀態變數多數無法有效的線上量測,僅以開環最適化操作策略缺乏韌性,模式不確定性(uncertainty)引起的瓶頸效應將嚴重劣化產率。
本研究引用結合前饋(feedforward)與回饋(feedback)控制的多環路控制策略,前饋以開環最適化原則控制;回饋控制則經由文獻中動態相對增益陣列(dynamic relative gain array, DRGA)分析的結果,決定其適當之配對。對於生化程序之強烈非線性特性,回饋控制引用模糊建模(fuzzy modeling)所建立之多重模式(multimodel),配合IMC調諧方法,以增益排程(gain scheduling)的PID控制器即完成非線性控制,其目的在於消除前饋控制未預期之模式誤差等干擾。多重模式的建立僅需由程序的起始時間與終止時間的近似模式內插組合,此控制策略對於大腸桿菌生長模式的程序亦具有良好的控制成效並具有優越的韌性。
另外,臨界點所引發的碳源基質設定點錯誤的問題,本研究則利用大腸桿菌在臨界點時的特性,設計一簡單的邏輯以逼近之。透過pH值的響應,所設計之動態搜尋法可以有效的將醋酸濃度壓至最低並促使大腸桿菌的產率逼近最佳值。


For the process of Escherichia coli, dissolved oxygen in fed-batch fermenter is also an important factor or essential substrate besides the carbon source substrate. It is necessary to maintain the concentration of these two essential substrates at optimized operation to obtain maximum productivity. However, it is difficult to obtain most state variables using the method of online measurements. It’s less robust to utilize open-loop optimized operation. Bottlenecks effect due to model uncertainty will reduce the productivity significantly. Multiloop control strategy that combines a feedforward controller with a feedback controller is proposed in this study. The feedforward controller is an open-loop optimal controller, and the adequate pairs of the feedback controller are determined via the dynamic relative gain array (DRGA). For the nonlinearity of the bioprocess, a gain scheduling feedback controller is employed by a multimodel approach with fuzzy modeling, and is tuned using Internal Model Control (IMC) principle to reject loads which is unpredictable in the feedforward controller. The structure of the multimodel utilizes interpolation techniques using only two local models at initial and terminative operating times.
In all the model parameters, the uncertainty of critical point of the substrate uptake rate will give the wrong setpoint value of the control loop which maintains the carbon source substrate concentration. The behavior of E.coli at this critical point will be used to design a simple set of fuzzy logic rules so that the approaching of the critical point can be achieved. By the response of pH, the method can be used to inhibit the concentration of acetate and make the concentration of E.coli to approach the optimal concentration profile.

誌謝 I 中文摘要 Ⅱ 英文摘要 Ⅳ 目錄 Ⅵ 圖目錄 Ⅸ 表目錄 ⅩⅢ 第一章 緒論 1 1-1. 引言 1 1-2. 文獻回顧 4 1-3. 研究動機與目的 7 1-4. 組織章節 8 第二章 饋料批次發酵程序概述 9 2-1. 引言 9 2-2. 饋料批次操作 9 2-3. 失控反應 16 2-4. 控制器設計 17 2-5 結論 21 第三章 大腸桿菌之饋料批次程序 25 3-1. 引言 25 3-2. 反應器的數學模式 25 3-3. 最適化操作 29 3-4. 瓶頸效應 32 第四章 控制器設計 49 4-1. 引言 49 4-2. 多重模式建立 49 4-3. 控制器調諧 51 4-4. 模擬與討論 52 第五章 模糊邏輯搜尋最適化操作點 85 5-1. 前言 85 5-2. 建立歸屬函數及規則庫 85 5-3. 模糊推論 87 5-4. 模擬與討論 88 5-5. 結論 90 第六章 結論 103 符號說明 105 參考文獻 108

[1] Åkesson, M. ; Karlsson,E.N. ; Axelsson, J. P. ”On-line Detection of Acetate Formation in Escherichia coli Cultures Using Dissolved Oxygen Responses to Feed Transients.” Control Eng. Practice, 1999, 5, 590-598.
[2] Åkesson, M. ; Hagander, P. ; Axelsson, J. P. ”A Probing feeding strategy for Escherichia coli cultures” Biotech. Tech., 1999, 13, 523-528.
[3] Åkesson, M. ; Hagander, P. ; Axelsson, J. P. ”Probing Control of Fed-Batch Cultivations : Analysis and Tuning.” Control Eng. Practice, 2000, 9, 709-723.
[4] Arkun, B. A. ; Ogunnaike, B. ; Pearson, R. ”Estimation of Nonlinear System Using Linear Multiple Models.” AIChE J., 1997, 43, 1204-1226.
[5] Assis, A. J. D. and Filho, R. M. ”Soft Sensors Development for on-line Bioreactor State Estimation.” Comput. and Chem. Eng., 2000, 24, 1099-1103.
[6] Azimzadeh, F. ; Galan, O. ; Romagnoli, A. J. ”On-line Optimal Trajectory Control for a Fermentation Process Using Multi-Linear Models.” Compu. and Chem. Eng., 2001, 25, 15-26.
[7] Baily, J. E. ”Mathematical Modeling and Analysis in Biochemical Engineering : Past Accomplishments and Future Opportunities.” Biotech. Prog., 1998, 14, 8-20.
[8] Bhat, J. ; Chidambaram, M. ; Madhavan, K. P. ”Robust Control of Batch-Fed Fermenter.” J. Proc. Control, 1991, 1, 146-151.
[9] Bisowarno, B. H. ; Tian, Y. C. ; Tadé, M. O. ”Model Gain Scheduling Control of an Ethyl tert-Butyl Ether Reactive Distillation Column.” Ind. Eng. Chem. Res., 2003, 42, 3584-3591.
[10] Boškovic, J. D. and Narendra, K. S. ”Comparsion of Linear, Nonlinear and Neural-Network-Based Adaptive Controllers for a Class of Fed-batch Fermentation Process.” Automatica, 1995, 31, 6, 817-840.
[11] Botz, D. W. ; Kelle,R. ; Frantzen, M. ; Wandrey, C. ”Substrate Controlled Fed-Batch Production of L-Lysine with Corynebacterium Glutamicum.” Biotechnol. Prog., 1997,13, 387-393.
[12] Cardello, R. J. and San, Ka-Yiu ”The Design of Controllers for Batch Bioreactors.” Biotechnol. Bioengng., 1988, 32, 519-526.
[13] Chaitali, M. ; Kapadi, M. ; Suraishkumar, G. K. ; Gudi, R. D. ”Productivity Improvement in Xanthan Gum Fermentation Using Multiple Substrate Optimization.” Biotech. Prog., 2003, 19, 1190-1198.
[14] Chang, D. M. ”A Study on the Snowball Effect in Fed-Batch Bioreactions. ” Biotechnol. Prog. , 2003, 19, 3, 1064-1070.
[15] Diaz, C. ; Dieu, P. ; Feuillerat, C. ; Lelong, P. ; Salomé, M. ”Adaptive Predictive Control of Dissolced Oxygen Concentration in a Laboratory-Scale Bioreactor.” J. Biotechnol., 1995, 43, 21-32.
[16] Dochain, D. ”State and Parameter Estimation in Chemical and Biochemical Processes : a Tutorial.” J. Process Control, 2003, 13, 801-818.
[17] Eyer, K. ; Oeggerli, A. ; Heinzle, E. ”On-line Gas Analysis in Animal Cell Cultivation : П. Methods for Oxygen Uptake Rate Estimation and its Application to Controlled Feeding of Glutamine.” Biotechnol. Bioeng., 1995, 45, 54-62.
[18] Frahm, B. ; Lane, P. ; Atzert, H ; Munack, A. ; Hoffmann, M. ; Hass, V. C. ; Pörtner, R. ”Adaptive, Model-Based Control by the Open-Loop-Feedback-Optimal Controller for the Effective Fed-Batch Cultivation of Hybridoma Cells.” Biotechnol. Prog., 2002, 18, 1095-1103.

[19] Gomes, J. and Menawat, A. ”Precise Control of Dissolved Oxygen in Bioreactors : a Model-Based Geometric Algorithm.” Chem. Eng. Sci., 2000, 55, 67-78.
[20] Henson, M. A. and Seborg, D. E. ”Nonlinear Control Strategies for Continuous Fermenters.” Chem. Eng. Sci., 1992, 47, 4, ,821-835.
[20] Hermann, T. ”Industrial Production of Amino Acids by Coryneform Bacteria.” J. Biotech., 2003, 104, 155-172.
[21] Honda, H. and Kobayashi, T. ”Fuzzy Control of Bioprocess ( Review ).” J. Biosci. Bioeng., 2000, 89, 5, 401-408.
[22] Hwang, C. and Lin, J. S. ”Numerical Optimization of a Repeated Fed-Batch Fermentation Process.” J. Chin. Inst. Chem. Eng., 1998, 29, 6, 405-414.
[23] Jobé, A . M.; Herwig, C. Surzyn , M.;Walker,B.; Marison ,I. and Stockar ,U. ”Generally Applicable Fed-Batch Cultures Concept Based on the Detection of Metabolic State by On-Line Balancing .” Biotechnol. Bioengng. , 2003, 82, 627-639.
[24] Konstantinov, K. ; Kishimoto, M. ; Seki, T. ; Yoshida, T. ”A Balanced DO-Stat and Its Application to the Control of Acetic Acid Excretion by Recombinant Escherichia Coli.” Biotech. Bioeng., 1990, 36, 750-758.
[25] Lee, J. ; Lee, S. Y. ; Park, S. ; Middelberg, A. P. J. ”Control of Fed-Batch Fermentations ( Research Review Paper ). ” Biotech. Advances, 1999, 17, 29-48.
[26] Lee, P. L. and Sullivan, G. R. ”Generic Model Control (GMC) .” Comput. and Chem. Eng., 1988, 12, 6, 573-580.
[27] Lee, S. Y. ”High Cell-Density Culture of Escherichia coli ( Review ).” Trends Biotech., 1996, 14, 98-105.
[28] McAvoy, J. T. ”Some Results on Dynamic Interaction Analysis of Complex Control Systems.” Ind. Eng. Chem. Process Des. Dev., 1983, 22, 42-49.

[29] Menawat, A. ; Mutharasan, R. ; Coughanowr, D. R. ”Singular Optimal Control Strategy for a Fed-Batch Bioreactor : Numerical approach.” AIChE J., 1987, 33, 5, 776-782.
[30] Modak, J. M. and Lim, H. C. ”Feedback Optimization of Fedbatch Fermentation.” Biotechnol. Bioengng., 1987, 30, 528-540.
[31] Montague, G. A. ; Morris, A. J. ; Wright, A. R. ; Aynsley, M. ; Ward, A. ”Modeling and Adaptive Control of Fed-Batch Penicillin Fermentation.” Canadian J. Chem. Eng., 1986, 64, 567-580.
[32] Moser, A. ”Bioprocess Technology : Kinetics and Reactors.” Spring-Verlag, 1988, New York.
[33] Özkan, L. ; Kothare, M. V. ; Georgakis, C. ”Control of a Solution Copolymerization Reactor Using Multi-Model Predictive Control.” Chem. Eng. Sci., 2003, 58, 1207-1221.
[34] Parulekar, S. J. ”Analytical Optimization of Some Single-Cycle and Repeated Fed-Batch Fermentations.” Chem. Eng. Sci., 1992, 47, 15-16, 4077-4097.
[35] Riveria, D. E. ; Morari, M. ; Skogestad, S. ”Internal Model Control (4) PID Controller Design.” Ind. Eng. Chem. Res., 1986, 25, 1, 252-265.
[36] Rodrigues, J. A. D. and Filho, R. M. ”Production Optimization with Operating Constraints for a Fed-Batch Reactor with DMC Predictive Control.” Chem. Eng. Sci., 1999, 54, 2745-2751.
[37] Rugh, W. J. and Shamma, J. S. ”Research on Gain Scheduling ( Survey Paper ).” Automatica, 2000, 36, 1401-1425.
[38] Sargantanis, L. G. and Karim, M. N. ”Adaptive Pole Placement Control Algorithm for DO-Control in -Lactamase Production.” Biotech. Bioeng., 1998, 60, 1, 1-10.
[39] Shuler, M. L. and Kargi, F. ”Bioprocess Engineering Basic Concepts.” Prentice-Hall Inc., 1992, New Jersey.
[40] Simon, L. and Karim, M. N. ”Identification and Control of Dissolved Oxygen in Hybridoma Cell Culture in a Shear Sensitive Environment.” Biotech. Prog., 2001, 17, 634-642.
[41] Skogestad, S. ; Lundström, P. ; Jacobsen, E. W. ”Selecting the Best Distillation Control Configuration.” AIChE J., 1990, 36, 5, 753-764.
[42] Smets,I.Y. ;Bastin, G.P. and Impe J.F.V. ”Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics .” Biotech. Prog., 2002, 18, 1116-1125.
[43] Staniškis, J. and Levišauskas, D. ”An Adaptive Control Algorithm for Fed-Batch Culture.” Biotech. Bioeng., 1984, 26, 419-425.
[44] Takagi, T. ; Sugeno, M. ”Fuzzy Identification of Systems and Its Applications to Modeling and Control.”IEEE Trans. Syst. Man. Cyber., 1985, SMC-15, 1, 116-132.
[45] Tartakovsky, B. ; Dainson, B. E. ; Lewin, D. R. ; Sheintuch, M. ”Observer-based nonlinear Control of a Fed-Batch autoinductive fermentation process.” The Chem. Eng. J., 1996, 61, 139-148.
[46] Van Impe,J. F. and Bastin, G. ”Optimal Adaptive Control of Fed-Batch Fermentation Process.” Control Eng. Practice, 1995, 3, 7, 939-954.
[47] Versyck, K. J. ; Claes, J. E. ; Impe, J. F. ”Practical Identification of Unstructured Growth Kinetics by Application of Optimal Experimental Design.” Biotech. Prog., 1997, 13, 524-531.
[48] Wagner, L. W. ; Matheson, N, H. ; Heisey, R. F. ; Schneider, K. ”Use of A Silicon Tubing Sensor To Control Methanol Concentration During Fed-Batch Fermentation of Pichia pastoris. ” Biotech. Tech., 1997, 11, 791-795.

[49] Weigand, W. A. ”Maximum Cell Productivity by Repeated Fed-Batch Culture for Constant Yield Case.” Biotechnol. Bioengng. , 1981, 23, 249-266
[50] Wirtz, K. W. ”A generic model for change in microbial kinetics coefficients.” Journal of Biotechnology. , 2001, 97, 147-162
[51] Whiffin,V. S. ;Cooney, M. J. ; Ruwish R. C. ”Online Detection of Density Cultures of Escherichia coli by Measurement of Changes in Dissolved Oxygen Transients in Complex Media.” Biotechnol. Bioengng. , 2004, 85, 422-433
[52] Xu,B. ;Jahic ,M. and Enfors,S.O. ”Modeling of Overflow Metabolism in Fed-Batch Cultures of Escherichia coli.” Biotechnol. Prog., 1999, 15, 81-90.
[53] Zhang, T. and Guay, M. ”Adaptive Parameter Estimation for Microbial Growth Kinetics.” AIChE J., 2002, 3, 48, 607-616.
[54] Zhang,W. ; Smith, L. A. ; Plantz, B. A. ; Schlegel, V. L. ; Meagher, M. M. ”Design of Methanol Feed Control in Pichia pastoris Fermentations Based upon a Growth Model.” Biotechnol. Prog., 2002, 18, 1392-1399.
[55] Zawada,J. ;Swartz, J. ”Maintaining Rapid Growth in Moderate Density Escherichia coli Fermentations.” Biotech. Bioeng., 2005, 89, 407-415.
[56] 張德明,重覆式進料批次生化反應器之控制策略 : (1)系統分析,國科會專題研究成果報告( NSC 89-2214-E-212-010 ),2001。
[57] 鍾佑政,饋料批次好氧生化反應器之多環路控制策略,2004。

無法下載圖示 全文公開日期 2008/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2008/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE