簡易檢索 / 詳目顯示

研究生: 林裕庭
Yu-Ting Lin
論文名稱: 電網與太陽能複合供電之養殖水車三相永磁式同步電動機驅動系統設計
Design of Three-phase Permanent-magnet Synchronous Motor Drive Powered by Grid and Solar Hybrid Energy for Aquatic Breeding Aerators
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
王順源
Shun-Yuan Wang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 三相永磁式同步電動機驅動器混合供電系統太陽能最大功率追蹤控制
外文關鍵詞: three-phase permanent-magnet synchronous motor drive, hybrid power system, maximum power point tracking control
相關次數: 點閱:359下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計應用於養殖水車複合供電之三相永磁式同步電動機驅動系統。此系統可概分為驅動器與供電電源二部分。前者使用電壓空間向量脈波寬度調變直流-交流功率轉換器,以提高系統之直流鏈電壓利用率,並藉線性霍爾偵測元件回授三相永磁式同步電動機轉子磁極角位置及轉速,進行電流及轉速閉迴路控制,提高系統運轉效率。另者,電網供電部分採用橋式二極體整流及單相全橋式功率轉換架構,將市電轉換為直流鏈電壓48.0V的電源;而太陽能發電系統則以雙臂交錯式昇壓型轉換器,配合太陽能最大功率追蹤及電流控制,提供高能源轉換效率之電源。市電及太陽能複合供電,可減少市電用量,達到節能的效果。
    本文之系統以32位元微處理器XMC1404為控制核心,並以軟體程式執行系統之控制策略。三相永磁式同步電動機驅動系統之量測,則分別以外加直流電源、市電及市電與太陽能複合供電等三種方式進行。在轉速為1500rpm下,實測結果顯示,當外加直流鏈電壓為48.0V時,變流器輸入端電流與功率分別為8.1A及390.0W,變流器輸出功率為366.0W,電動機機械轉矩與相電流峰值分別為2.08N-m及17.1A,相電流總諧波失真率為4.4%,三相變流器與電動機效率分別為93.8%及89.2%,算得整體效率為83.7%;而在僅由市電供電之情況下,直流鏈電壓為43.6V,變流器輸入與輸出功率分別為183.1W及167.8W,算得變流器效率為91.6%;最後,在市電與太陽能複合供電下,太陽能發電系統提供68.5W至電壓為46.0V之直流鏈,全橋式功率轉換器之輸出功率由原本直流鏈端之輸入功率272.3W降到204.0W,三相變流器之輸出功率為240.2W,算得變流器效率為88.2%,此時後級三相永磁式同步電動機相電流峰值與總諧波失真率分別為11.2A及5.4%,實驗結果驗證了本文系統之可行性。


    This thesis aims to design three-phase permanent-magnet synchronous motor (PMSM) drive powered by grid and solar hybrid energy for aquatic breeding aerators. The proposed system mainly contains two parts, namely the driver and its power supply. The former is a PMSM driven by three-phase, three-arm power inverter using voltage space vector pulse-width modulation to enhance the utilization ratio of dc-link voltage. In addition, linear hall-effect sensors are used to detect the rotor position and rotational speed to facilitate current and speed closed-loop controls for efficiency improvement. On the other hand, a bridge rectifier and single-phase full-bridge power converter are built to establish the dc power supply for dc-link voltage of 48.0V from power grid. Moreover, a two-arm interleaved boost converter along with the maximum power point tracking are proposed to improve the efficiency of power conversion for solar energy generation. The grid and solar hybrid power supply can reduce the utility power consumption and thereby save the energy.
    The 32-bit microprocessor, XMC1404, is adopted as the system core. All control strategies are accomplished with C language. Experimental evaluation of the three-phase PMSM drive system is conducted with three different cases of power supply. Specifically, the scenarios of the driver powered by dc source, grid as well as grid and solar hybrid energy. At motor speed of 1500rpm, experimental results show that when a dc-link voltage of 48.0V is provided by a dc source, the current and power at inverter input are 8.1A and 390.0W, respectively. The inverter output power is 366.0W. The corresponding PMSM torque, phase current and its total harmonic distortion (THD) are 2.08N-m, 17.1A and 4.4%. The efficiencies of inverter and PMSM are 93.8% and 89.2%, respectively, resulting in the overall efficiency of 83.7%. Besides, when the dc-link voltage of 43.6V is supplied by power grid, the input and output powers of inverter are 183.1W and 167.8W, respectively. This yields the inverter efficiency of 91.6%. Finally in grid and solar hybrid power supply case, the solar power subsystem provides 68.5W to the dc-link voltage of 46.0V, the output power of single-phase full-bridge power converter is reduced from 272.3W to 204.0W, with the inverter output power of 240.2W. This gives the inverter efficiency of 88.2%. The corresponding PMSM phase current and its THD are 11.2A and 5.4%. In short, the feasibility of the proposed system is verified experimently.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 符號索引 VIII 圖表索引 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 系統架構及本文特色 3 1.4 本文大綱 6 第二章 三相永磁式同步電動機之驅動系統 7 2.1 前言 7 2.2 三相永磁式同步電動機之旋轉座標系統數學模式 7 2.3 三相永磁式同步電動機之參數量測 9 2.4 三相永磁式同步電動機之轉子磁極角位置估測 13 2.5 三相永磁式同步電動機之電流及轉速閉迴路控制策略 14 2.6 三相永磁式同步電動機電流及轉速閉迴路控制模擬結果. 18 2.7 結語 21 第三章 具市電及太陽能混合供電之電源供給器 22 3.1 前言 22 3.2 直流電源供應器系統 22 3.3 太陽能發電系統 25 3.3.1 太陽能板規格及模擬 25 3.3.2 太陽能發電系統之功率轉換器分析及控制 28 3.3.3 太陽能發電系統之最大功率追蹤控制 32 3.4 輔助電源系統 35 3.5 市電及太陽能混合供電系統 37 3.6 結語 38 第四章 實體製作及系統整合 39 4.1 前言 39 4.2 三相永磁式同步電動機驅動系統之硬體架構及軟體規劃 39 4.2.1 微處理器介面電路之規劃 39 4.2.2 直流電壓回授電路 42 4.2.3 電流回授電路 42 4.2.4 線性霍爾偵測元件 43 4.2.5 軟體規劃 44 4.3 混合供電系統之硬體架構及軟體規劃 48 4.3.1 微處理器介面電路之規劃 48 4.3.2 直流電壓回授電路 49 4.3.3 電流回授電路 51 4.3.4 軟體規劃 51 4.4 系統整合含供電方式及驅動系統 55 4.4.1 直流電源供應器供電系統 55 4.4.2 市電供電系統 59 4.4.3 市電及太陽能混合供電系統 61 4.5 結語 65 第五章 結論及建議 66 5.1 結論 66 5.2 建議 67 參考文獻 68 附錄A 三相永磁式同步電動機規格 72 附錄B 三相變流器之電壓空間向量脈波寬度調變控制 73 附錄C 實體照片 78

    參考文獻
    [1] 旺欣節能科技
    (http://wangxin.tw/news_all.aspx?news_id=16)
    [2] 蕭鈞毓, “六相及雙三相繞組永磁式同步電動機之分析及設計”, 國立台灣科技大學電機工程研究所碩士論文, 民國96年.
    [3] A. Consoli and A. Raciti, “Analysis of permanent magnet synchronous motors”, IEEE Transactions on industry Applications, vol. 27, no.l, pp. 350-354, 1991.
    [4] R. F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent magnet synchronous motor in variable speed drive applications”, IEEE Transactions on Industry Applications, vol. 26, no.1, pp. 115-123, 1990.
    [5] P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives, “ IEEE Transactions on Industry Applications, vol. 27, no.5, pp 986-996, 1991.
    [6] C. Cavallaro, A. O. Di Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo, and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches”, IEEE Transactions on Industrial Electronics, vol. 52, no.4, pp. 1153-1160, 2005.
    [7] H. Van Der Broeck, H. C. Skudelny and G. V. Stanke, “Analysis and Realization of a Pulse-width Modulator Based on Voltage Space Vectors”, IEEE Transactions on Industry Applications, vol. 24, no.1, pp. 142-149, 1998.
    [8] W. D. Jiang, S. W. Du, L. C. Chang, Y. Zhang and Q. Zhao, “Hybrid PWM strategy of SVPWM and VSVPWM for NPC three-level voltage-source inverter”, IEEE Transactions on Power Electronics, vol. 25, no.10, pp. 2607-2619, 2010.
    [9] J. Y. Ying, W. X. Dong, M. L. Liang and Y. S. Cai, “Application and Simulation of SVPWM in three phase inverter”, 2011 6th International Forum on Strategic Technology (IFOST), vol. 1, pp. 541-544, 2011.
    [10] C. Wang, T. Tian, and Y. Ye, “Research on three-phase inverter SVPWM Modulation Based on FPGA”, 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2, pp. 222-225, 2013.
    [11] 廖昭博, “汽車用輔助型電動壓縮機之永磁式同步電機驅動系統研製”, 台灣科技大學電機工程研究所碩士論文, 民國105年.
    [12] 蔡智宇, “三相永磁式同步電動機及驅動器之性能量測系統研製”, 台灣科技大學電機工程研究所碩士論文, 民國106年.
    [13] F. Blaschke, “The Principle of Field Orientation as Applied to The New Transvector Closed Loop Control System for Rotating Field Machines”, Siemens Review, vol. 34, pp. 170-174, 2001.
    [14] A. Santisteban and R. M. Stephan, “Vector Control Methods for
    Induction Machines: An Overview,” IEEE Transactions on
    Education, vol. 44, no.2, pp. 170-174, 2001.
    [15] H. M. Mallikarjuna, K. P. Guruswamy, S. P. Singh, “Design, Modeling and Analysis of Two Level Interleaved Boost Converter”, pp. 509-514, 2013.
    [16] B. ChandraSekhar, G. Y. Reddy, R. S. Kumar, S. Lakshminarayanan, “Design, Simulation and Validation of Solar Inverter with Two Phase Interleaved Boost Converter”, 2015 International Conference on Power and Advanced Control Engineering (ICPACE), pp. 7-11, 2015.
    [17] N. Parveen, “Design and Simulation of Interleaved DC-DC Boost Converter for Three-phase Loads Using Solar Panel”, pp. 514-519, 2016.
    [18] 劉怡成, “應用雙重交錯式昇壓轉換器於獨立型太陽能發電系統”, 明志科技大學電機工程研究所碩士論文, 民國99年.
    [19] 曾晨綱, “以控制區域網路通信整合再生能源微電網系統”, 國立台灣科技大學電機工程研究所碩士論文, 民國102年.
    [20] Heinz Van der Broeck , Ibrahim Tezcan, “1KW Dual Interleaved Boost Converter for Low Voltage Applications”, CES/IEEE IPEMC vol. 3, pp. 1-5, 2006.
    [21] A. Thiyagarajan, S. G. Praveen Kumar, and A. Nandini, “Analysis and comparison of conventional and interleaved DC/DC boost converter”, Second International Conference on Current Trends In Engineering and Technology - ICCTET 2014, pp. 198-205, 2014.
    [22] Saleh E. Babaa, “High Efficient Interleaved Boost Converter with novel Switch Adaptive Control in PV systems”, 8th Power Electronics, Drive Systems & Technologies Conference, pp. 525-530, 2017.
    [23] C. Hua, J. Lin and C. Shen, “Implementation of a DSP-controlled photovoltaic system with peak power tracking”, IEEE Transactions on Industrial Electronics, vol. 45, no.1, pp. 99-107, 1998.
    [24] C. C. Hua and C. M. Shen, “Study of maximum power tracking techniques and control of DC/DC converter for photovoltaic power system”, IEEE-PESC Conference Record, vol. 1, pp. 86-93, 1998.
    [25] X. Liu and L. A. C. Lopes, “An improved perturbation and observation maximum power point tracking algorithm for PV arrays”, IEEE-PESC Conference Record, vol. 3, pp. 2005-2010, 2004.
    [26] Z. Salmeh, F. Dagher, and W.-A. Lynch, “Step-Down Maximum Power Point Tracker for Photovolatic System”, Solar Energy, vol. 46, pp. 278-282, 1991.

    [27] O. Wasynczuck, “Dynamic Behavior of a Class of Photovoltaic Power System”, IEEE Transactions on Power Apparatus and System, vol. 102, pp. 3031-3037, 1983.
    [28] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovolatic Power Tracking: an Algorithm for Rapidly Changing Atmospheric Conditions”, Proceedings of IEEE Generation Transmission and Distribution, vol. 142, pp. 59-64, 1995.
    [29] 李天鵬, “市電與太陽能電池直流並聯供電系統,” 國立台灣科技大學電子工程研究所碩士論文, 民國96年.
    [30] 范亦超, “市電與太陽光電能單級直流並聯供電系統,” 國立台灣科技大學電子工程研究所碩士論文, 民國97年.
    [31] XMC 1404-F064-X0064 AA – Infineon Technologies.
    ( https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc1000-industrial-microcontroller-arm-cortex-m0/xmc1404-f064x0064-aa/ )
    [32] R. Krishnan, “Electric Motor Drives: Modeling, Analysis, and Control,” Prentice Hall, 2001.
    [33] B. K. Bose, “Modern Power Electronics and AC Drives,” Prentice Hall, 2002.
    [34] TYNS60610300 High Quality Mono-Crystalline Photovoltaic Module, TYNSOLAR Solar.
    (http://www.tynsolar.com.tw/upload/TYNS60610300__1640x992mm_VPC.pdf)

    無法下載圖示 全文公開日期 2023/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE