簡易檢索 / 詳目顯示

研究生: 林炯儒
Chiung-Ju Lin
論文名稱: 骨細胞易貼附之人工牙根薄膜研究
A Study of Dental Implant Membrane on Osteoblast Adhension
指導教授: 張復瑜
Fuh-Yu Chang
葉家宏
Chia-Hung Yeh
口試委員: 郭俊良
Chun-Liang Kuo
葉家宏
Chia-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 可降解高分子人工牙根薄膜奈米鑽石
外文關鍵詞: Biodegradable Polymer, Dental Implant Membranes, Nanodiamond
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人工牙根表面處理的技術主要是在人工牙根的表面創造適合骨細胞貼附及生長的環境,並可加速骨細胞進行分化及礦化作用,於最短時程內形成骨骼。品質優劣將直接影響植入後骨整合的療效。奈米鑽石展現絕佳的機械特性及化學穩定性,使其高度適合生物醫學應用。此外,鑽石表面證實對骨形態形成蛋白BMP-2等生物分子,或DNA等其他分子有絕佳的吸附行為。文獻中指出奈米鑽石影響細胞行為的表面形態與細胞膜上的整合反應。且目前人工牙根品牌眾多,人工牙根設計與製程皆不同,導致臨床應用上品質參差不齊。有鑒於此,希望研究出任何廠商通用之表面修飾(人工奈米鑽石)的人工牙根薄膜,透過直接將此薄膜貼附於各廠家之人工牙根表面,以達到表面處理使其適合骨細胞生長的環境。
實驗方法採用相分離成形製程製作具微奈米等級結構之薄膜以開發牙根表面具奈米鑽石之薄膜製作。相分離原理為溶劑與非溶劑液體交換導致在人工牙根薄膜表面形成微奈米尺寸孔洞。結果顯示薄膜適合細胞貼附,可以提升人工牙根與人體骨組織之間的骨整合強度,縮短術後整合時間。


Dental implant surface treatment technology mainly involves: create an environment on the dental implant surface suitable for bone cell attachment and growth and accelerate the differentiation and mineralization of bone cells to lay down new bone material in the shortest time, the quality of which will directly affect the efficacy of bone integration after implantation. Nanodiamond display excellent mechanical properties and chemical stability, making them highly suitable for biomedical applications. In addition, the diamond surface has been proven to demonstrate excellent adsorption of bone morphogenetic protein BMP-2, other biomolecules, or DNA and other molecules. In the literatures, they are suitable in the surface form affecting cell behavior data and integration responses on cell membranes. Many dental implant brands are available, each with a different dental implant design and processes, which result in quality variance in clinical applications. The ultimate objective of this reserch is to develop dental implant membranes through surface modification (artificial nanodiamond) for universal use by all vendors, so as to directly attach the membrane developed on the surfaces of dental implants produced by different vendors, in order to achieve surface treatment and create an environment suitable for bone growth.
For the methodology part, phase separation micromolding(PSµM) were adopted to produce dental implant membranes through surface modification (artificial nanodiamond) with micro/nano structure. PSµM is initiated due to solvent and non-solvent(ethanol) liquid exchanged leading to form micro/nano holes at the surface of dental implant membranes. As result, the membranes will be suitable for cell to attach. It will promote the osteointergration strength between dental implant and patient 's bone tissue and shorten the repair time.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究背景 1.3 研究動機與目的 第二章 文獻回顧 2.1 薄膜結構成型 2.1.1 聚乳酸(PLA)簡介 2.1.2 薄膜結構製作 2.2 奈米鑽石特性與應用 2.3 細胞培養影響因素 2.3.1 薄膜表面親疏水性 2.3.2 奈米鑽石添加量 第三章 實驗材料與規劃 3.1 實驗材料與儀器 3.1.1 細胞來源 3.1.2 薄膜製作所需材料 3.1.3 細胞培養所需藥品 3.1.4 儀器設備 3.1.5 量測儀器 3.2 實驗方法 3.2.1 結構薄膜製作 3.2.2 薄膜表面接觸角量測 3.2.3 奈米鑽石數量量測 3.2.4 培養前試片滅菌 3.2.5 細胞培養測試 第四章 實驗結果與討論 4.1 接觸角量測 4.2 奈米鑽石量測 4.3 浸塗(dip coating)薄膜製作 4.4 旋塗(spin coating)薄膜製作 4.5 細胞培養測試 4.5.1 測試試片規劃 4.5.2 薄膜與金屬基材貼附力 4.5.3 細胞培養測試結果 4.6 薄膜與牙根結合 第五章 結論與未來展望 5.1. 結論 5.2. 未來展望 參考文獻

[1] 黃經理,2014, 植牙前必須知道的12件事,金塊文化。
[2] 林孝熹,2008,牙醫 234 口腔保健網,Available at: http://www.234.com.tw/implant/contDetail.php?s=5&no=149
[3] 生活牙醫美學中心,2012, Available at: http://graceimp.com.tw/treatment_implant_1.html
[4] 柯心卉,2017,集邦科技TrendForce ,Available at: https://press.trendforce.com.tw/press/20170316-3547.html
[5] 陳璽竹,表面處理技術於人工牙根的應用,金屬中心金屬製程研發處熔鑄組,pp.102-104。
[6] F. Tamimi, J. Torres,K. Al-Abedalla, E. Lopez-Cabarcos, M. H. Alkhraisat, D. C. Bassett, and J. E.Barralet , “Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site”, 2014, Biomaterials, Vol.35, pp.5436-5445.
[7] M. Hallman, L. Sennerby, and S. Lundgren , “A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20: 80 mixture”, 2002, International Journal of Oral and Maxillofacial Implants, Vol.17, pp.635-643.
[8] 李長祐、曲國田,2006,“植牙失敗案例之探討及處置--病例報告”,中華牙誌(Chin Dent J),25卷,3期,頁220~226。
[9] L. T. Lim, R. Auras, and M. Rubino,“Processing technologies for poly(lactic acid)”, 2008, Progress in Polymer Science, Vol.33, pp.820-852.
[10] J. M. Anderson, and M. S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres”, 1997, Advanced Drug Delivery Reviews, Vol.28, pp.5-24.
[11] G. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert “In vitro and in vivo degradation of poly (D, L lactide/glycolide) type microspheres made by solvent evaporation method”, 1989, Biomaterials, Vol.10, pp.557-563.
[12] H. W. Fang, K. Y. Li, T. L. Su, T. C. K. Yang, J. S. Chang, P. L. Lin, and W. C. Chang “Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity”, 2008, Materials Letters, Vol.62, pp.3739-3741.
[13] V. T. Bui, Q. C. Tran, V. T. Nguyen, V. D. Dao, J. S. Choi, and H. S. Choi “Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures”, 2017, Chemical Engineering Journal, Vol.320, pp.561-569.
[14] B. J. Papenburg, L. Vogelaar, L. A. Bolhuis-Versteeg, R. G. Lammertink, D. Stamatialis, and M. Wessling “One-step fabrication of porous micropatterned scaffolds to control cell behavior”, 2007, Biomaterials, Vol.28, pp.1998-2009.
[15] P. Bajaj, D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, and R. Bashir “Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications”, 2007, Biomedical microdevices, Vol.9, pp.787-794.
[16] D. Steinmüller-Nethl, F. R. Kloss, M. Najam-Ul-Haq, M. Rainer, K. Larsson, C. Linsmeier, and N. Memmel “Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption”, 2006, Biomaterials, Vol.27, pp.4547-4556.
[17] 陳雅順,中華民國103年7月,大豆卵磷脂與Type I膠原蛋白接枝於鈦表面之研究(Compare the Features on the Properties between Phosphatidylcholine and Type I Collagen Bioactive Grafting onto Titanium Surfaces ),逢甲大學碩士論文。
[18] N. Cai, Q. Dai, Z. Wang, X. Luo, Y. Xue, and F. Yu “Preparation and properties of nanodiamond/poly (lactic acid) composite nanofiber scaffolds”, 2014, Fibers and Polymers, Vol.15, pp.2544-2552.

[19] M. Parizek, T. E. Douglas, K. Novotna, A. Kromka, M. A. Brady, A. Renzing, and P. Ryparova “Nanofibrous poly (lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering”, 2012,International journal of nanomedicine, Vol.7, pp.1931-1951.
[20] R. T. Franceschi, W. M. James, and G. Zerlauth “1α, 25‐Dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line”, 1985,Journal of cellular physiology, Vol.123, pp.401-409.
[21] 耿緯皓,中華民國105年7月,生醫支架的可降解多層覆膜研究(A Study of Biodegradable Multilayer Thin Film for Biomedical Stent),國立台灣科技大學碩士論文。
[22] “細胞計數與存活測試”,BCRC食品工業發展研究所,Available at: http://classroom.bcrc.firdi.org.tw/home/cell/cell_counting
[23] 葉純宜、林明瀅、陳小妮、王復德,“紫外線殺菌效能探討”, 台灣醫院感染管制學會,感染控制雜誌 第15卷 第5期。https://www.nics.org.tw/old_nics/magazine/15/05/15-5-3.htm#
[24] 王韻婷,中華民國98年7月,灌流反應器中成骨細胞行為之研究(Research of osteoblast’s behavior in the perfusion bioreactor),國立台北科技大學碩士論文。
[25] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, and M. Hadjiargyrou “Control of degradation rate and hydrophilicity in electrospun non-woven poly (D, L-lactide) nanofiber scaffolds for biomedical applications”, 2003, Biomaterials, Vol. 24, pp.4977-4985.

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE