簡易檢索 / 詳目顯示

研究生: Ramelito Casado Agapay
Ramelito Casado Agapay
論文名稱: 以無溶劑製程合成結構脂質
Solvent-free Processes for the Synthesis of Structured Lipids
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 朱義旭
Yi-Hsu Ju
Alchris Woo Go
Alchris Woo Go
Artik Elisa Angkawijaya
Artik Elisa Angkawijaya
Chi Thanh Truong
Chi Thanh Truong
Suryadi Ismadji
Suryadi Ismadji
Phuong Lan Tran Nguyen
Phuong Lan Tran Nguyen
Huynh Lien Huong
Huynh Lien Huong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 103
中文關鍵詞: structured lipidssolvent-free processesterification
外文關鍵詞: structured lipids, solvent-free process, esterification
相關次數: 點閱:280下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在生產結構脂質,特別是結構三酸甘油酯時甚少使用像自由脂肪酸與甘油酯化這種從下而上之反應。 雖然有研究報導過自由脂肪酸與甘油酯化,這些多半著眼於合成部分甘油酯或結構脂質之前驅物,而並未證明其真正用於生產結構脂質。通常由上而下之反應,例如新種或特殊油、純三酸甘油酯、特殊脂肪酸以及溶於溶劑中甘油之間酯化常被用來合成時尚新穎的結構脂質。本研究發展一無溶劑之製程將甘油與脂肪酸 ( 癸酸、月桂酸、油酸、棕梠酸) 行酯化反應。經數次測試後,發展出一使用一階段或二階段之靈活程序;後者包括一低溫酯化步驟接著一高溫酯化步驟可以生產相當量之結構脂質以及其前驅物。低限度修正包括反應物加料、一鍋法和等溫方案等用以改善產物組成及產率。結果以100克不含甘油脂產物為基準,可得二酸甘油酯 > 40 克、 中長鏈三酸甘油酯 > 20 克、富含油酸及棕梠酸結構三酸甘油酯 > 40 克。根據此程序,本研究也證實使用像是脂肪酸餾出物之工業副產物之潛力。


Processes based on bottom-up reactions, e.g. esterification of free fatty acids with glycerol, are rarely explored in the production of structured lipids, especially structured triglycerides. Although several cases of esterification of free fatty acids and glycerol have been reported, most of these focused on the synthesis of partial glycerides or precursors for other structured lipids without demonstrating their actual use in structured lipid production. Often, top-down reactions such as inter- and trans-esterification, utilizing novel or specialty oils, pure triglycerides, unique fatty acids, and glycerol dissolved in solvents are employed to synthesize “trendy” or new types of structured lipids. In this study, a process, which is based on solvent-free esterification of free fatty acids and glycerol, is developed using a model reaction system composed of one or more of the following acids with glycerol: capric acid, lauric acid, oleic acid, and palmitic acid. As a result of several tests with various strategies, a flexible process operated either in one- or two-steps, the latter consisting of a low-temperature esterification step followed by a high-temperature esterification step, was established to yield SL and their precursors in substantial amounts. Minimalist modification schemes or techniques, including reactant dosing, one-pot schemes, and isothermal regimes were implemented to improve product composition and process productivity. From the process, diglycerides of > 40 g, medium-long-chain triglycerides of > 20 g, and oleic acid-and-palmitic acid-rich structured triglycerides of > 40 g all based on 100 g of the respective glycerol-free products can be obtained. Furthermore, the potential of utilizing industrial by-products such as fatty acid distillates had been demonstrated through a modification of the baseline process.

TABLE OF CONTENTS TITLE ………………………………………………………………………………… I RECOMMENDATION LETTER ………………………………………………….. III APPROVAL LETTER ……………………………………………………………..... V ABSTRACT (Chinese) IX ABSTRACT (English) ……………………………………………………………….X ACKNOWLEDGMENTS XI TABLE OF CONTENTS ………………………………………………………….. XII LIST OF ABBREVIATIONS XVI LIST OF FIGURES XVIII LIST OF TABLES XX CHAPTER 1: BACKGROUND OF THE STUDY 1 1.1 Introduction 1 1.2 Goal and Objectives 3 1.3 Significance of the Study 4 1.4 Scope and Limitations 4 CHAPTER 2: REVIEW OF RELATED LITERATURE 6 2.1 Structured Lipids of Commercial Interests 8 2.1.1 Partial Glycerides 8 2.1.2 Medium-Long Chain Triglycerides 10 2.1.3 Human Milk Fat Substitutes 11 2.1.4 Cocoa Butter Replacers 12 2.2 Synthesis of Structured Lipids 14 2.2.1 Interesterification 15 2.2.2 Acidolysis 16 2.2.3 (Trans)esterification 16 2.2.4 Esterification of Glycerol with Free Fatty Acids 17 2.3 Raw Materials for Structured Lipid Synthesis 18 2.3.1 Oil Hydrolysates 18 2.3.2 Waste Cooking Oil 18 2.3.3 Biodiesel By-Products 19 2.3.4 Oil Deodorizer Distillates 19 2.3.5 Lipases 19 CHAPTER 3: MATERIALS AND METHODS 21 3.1 Materials 21 3.2 Methods 22 3.2.1 Synthesis of Partial Glycerides 22 3.2.2 Synthesis of Structured Triglycerides 23 3.2.3 Recycling of Lipases 24 3.2.4 Purification of Glycerides 24 3.2.5 Analysis of Fatty Acids and Glycerides 26 3.2.6 Calculation of Parameters or Responses 27 CHAPTER 4: LOW-TEMPERATURE ENZYME-CATALYZED DIGLYCERIDE SYNTHESIS 30 4.1 Effect of Oleic Acid to Glycerol Molar Ratio on Product Distribution and Selectivity 30 4.2 Effect of Glycerol Dosing on Conversion and Product Distribution 35 4.3 Effect of Oleic Acid Dosing on Conversion and Product Distribution 42 CHAPTER 5: SYNTHESIS OF MEDIUM-LONG CHAIN TRIGLYCERIDES 45 5.1 Effect of Free Fatty Acid to Glycerol Ratio and Fatty Acid Length on Diglyceride Distribution and Selectivity 45 5.2 Effect of Sequence of Fatty Acid Addition and Free Fatty Acid Length on MCLT Distribution 49 5.3 Prospects of Product Application 53 CHAPTER 6: SYNTHESIS OF STRUCTURED LIPIDS BASED ON OLEIC AND PALMITIC ACIDS 54 6.1 Preliminary Tests on OPO production based on a Two-Step Esterification Process 54 6.2 Effect of Reduced LTEE Reaction Time on OPO production 57 6.3 Purification of Intermediate and Final Crude Products of the Two-Step Esterification Process 61 CHAPTER 7: IMPROVING PROCESS PRODUCTIVITY OF STRUCTURED LIPID SYNTHESIS 63 7.1 Effects of Reactant Feeding Schemes and Temperature Regimes on Product Distribution 63 7.2 Effect of Reduced Reaction Time and Molar Ratios on Product Distribution 70 CHAPTER 8 72 CONCLUSIONS AND RECOMMENDATIONS 72 REFERENCES 74

Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007a). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134–1140. https://doi.org/10.1016/j.foodchem.2006.10.017
Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007b). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chemistry, 103(4), 1141–1152. https://doi.org/10.1016/j.foodchem.2006.10.026
Abdelmoez, W., Mostafa, N. A., & Mustafa, A. (2013). Utilization of oleochemical industry residues as substrates for lipase production for enzymatic sunflower oil hydrolysis. Journal of Cleaner Production, 59, 290–297. https://doi.org/10.1016/j.jclepro.2013.06.032
Abed, S. M., Wei, W., Ali, A. H., Korma, S. A., Mousa, A. H., Hassan, H. M., … Wang, X. (2018). Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. Lwt, 93(March), 306–315. https://doi.org/10.1016/j.lwt.2018.03.057
Abed, S. M., Zou, X., Ali, A. H., Jin, Q., & Wang, X. (2017). Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. Bioresource Technology, 243, 448–456. https://doi.org/10.1016/j.biortech.2017.06.090
Abro, S., Pouilloux, Y., & Barrault, J. (1997). Selective synthesis of monoglycerides from glycerol and oleic acid in the presence of solid catalysts. In Heterogeneous Catalysis and Fine Chemicals IV (pp. 539–546).
Adachi, D., Hama, S., Nakashima, K., Bogaki, T., Ogino, C., & Kondo, A. (2013). Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresource Technology, 135, 410–416. https://doi.org/10.1016/j.biortech.2012.06.092
Aftar Mizan, A. B., Ayob, M. K., Ma’aruf, A. G., Mohamad Yusof, M., & Izzreen, I. (2016). Optimization of the synthesis of structured lipids using medium chain fatty acids through acidolysis. American-Eurasion Journal of Agricultural & Environmental Sciences, 16(4), 698–706. https://doi.org/10.5829/idosi.aejaes.2016.16.4.102163
Aresta, M., Dibenedetto, A., Nocito, F., & Ferragina, C. (2009). Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Journal of Catalysis, 268(1), 106–114. https://doi.org/10.1016/j.jcat.2009.09.008
Bagheri, S., Julkapli, N. M., & Yehye, W. A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113–127. https://doi.org/10.1016/j.rser.2014.08.031
Bahari, A., & Akoh, C. C. (2018). Synthesis of a Cocoa Butter Equivalent by Enzymatic Interesterification of Illipe Butter and Palm Midfraction. JAOCS, Journal of the American Oil Chemists’ Society, 95(5), 547–555. https://doi.org/10.1002/aocs.12083
Bélafi-Bakó, K., Kovács, F., Gubicza, L., & Hancsók, J. (2002). Enzymatic Biodiesel Production from Sunflower Oil by Candida antarctica Lipase in a Solvent-free System. Biocatalysis and Biotransformation, 20(6), 437–439. https://doi.org/10.1080/1024242021000040855
Berry, S. E. E. (2009). Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: An overview and implications for cardiovascular disease. Nutrition Research Reviews, 22(1), 3–17. https://doi.org/10.1017/S0954422409369267
Biswas, N., Cheow, Y. L., Tan, C. P., & Siow, L. F. (2018). Physicochemical Properties of Enzymatically Produced Palm-Oil-Based Cocoa Butter Substitute (CBS) With Cocoa Butter Mixture. European Journal of Lipid Science and Technology, 120(3), 1–9. https://doi.org/10.1002/ejlt.201700205
Caballero, E., Soto, C., Olivares, A., & Altamirano, C. (2014). Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases. PLoS ONE, 9(9), e107749. https://doi.org/10.1371/journal.pone.0107749
Cai, H., Li, Y., Zhao, M., Fu, G., Lai, J., & Feng, F. (2015). Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLOS ONE, 10(7), e0133857. https://doi.org/10.1371/journal.pone.0133857
Chen, B., Zhang, H., Cheong, L. Z., Tan, T., & Xu, X. (2012). Enzymatic Production of ABA-Type Structured Lipids Containing Omega-3 and Medium-Chain Fatty Acids: Effects of Different Acyl Donors on the Acyl Migration Rate. Food and Bioprocess Technology, 5(2), 541–547. https://doi.org/10.1007/s11947-009-0322-8
Chen, M.-L., Vali, S. R., Lin, J.-Y., & Ju, Y.-H. (2004). Synthesis of the structured lipid 1,3-dioleoyl-2-palmitoylglycerol from palm oil. Journal of the American Oil Chemists’ Society, 81(6), 525–532. https://doi.org/10.1007/s11746-006-0935-2
Cho, H. J., Kim, S. H., Hong, S. W., & Yeo, Y. K. (2012). A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel, 93, 373–380. https://doi.org/10.1016/j.fuel.2011.08.063
Choi, J. H., Seo, M. J., Lee, K. T., & Oh, D. K. (2017). Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants. Biotechnology and Bioprocess Engineering, 22(6), 709–716. https://doi.org/10.1007/s12257-017-0374-y
Chol, C. G., Dhabhai, R., Dalai, A. K., & Reaney, M. (2018). Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Processing Technology, 178(December 2017), 78–87. https://doi.org/10.1016/j.fuproc.2018.05.023
Chongkhong, S., Tongurai, C., & Chetpattananondh, P. (2009). Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renewable Energy, 34(4), 1059–1063. https://doi.org/10.1016/j.renene.2008.07.008
Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31(8), 563–568. https://doi.org/10.1016/j.biombioe.2007.03.001
Choudhury, R. B. R. (1962). The preparation and purification of monoglycerides. II. Direct esterification of fatty acids with glycerol. Journal of the American Oil Chemists Society, 39(8), 345–347. https://doi.org/10.1007/BF02631982
Dayrit, F. M. (2015). The Properties of Lauric Acid and Their Significance in Coconut Oil. Journal of the American Oil Chemists’ Society, 92(1), 1–15. https://doi.org/10.1007/s11746-014-2562-7
Delplanque, B., Gibson, R., Koletzko, B., Lapillonne, A., & Strandvik, B. (2015). Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. Journal of Pediatric Gastroenterology and Nutrition, 61(1), 8–17. https://doi.org/10.1097/MPG.0000000000000818
Devi, B. L. A. P., Zhang, H., Damstrup, M. L., Guo, Z., Zhang, L., Lue, B.-M., & Xu, X. (2008). Enzymatic synthesis of designer lipids. Oléagineux, Corps Gras, Lipides, 15(3), 189–195. https://doi.org/10.1051/ocl.2008.0194
Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: From glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 67(6), 1308–1313. https://doi.org/10.1016/j.tet.2010.11.070
Din, N. S. M. N. M., Idris, Z., Kian, Y. S., & Hassan, H. A. (2013). Preparation of polyglycerol from palm-biodiesel crude glycerin. Journal of Oil Palm Research, 25(DEC), 289–297.
Dollah, S., Abdulkarim, S. M., Ahmad, S. H., Khoramnia, A., & Ghazali, H. M. (2015). Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. Grasas y Aceites, 66(2), e073. https://doi.org/10.3989/gya.0695141
Duan, Z.-Q., Du, W., & Liu, D.-H. (2010a). Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochemistry, 45(12), 1923–1927. https://doi.org/10.1016/j.procbio.2010.03.007
Duan, Z.-Q., Du, W., & Liu, D.-H. (2010b). The pronounced effect of water activity on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Catalysis Communications, 11(5), 356–358. https://doi.org/10.1016/j.catcom.2009.10.030
Duan, Z.-Q., Du, W., & Liu, D.-H. (2010c). The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification. Bioresource Technology, 101(7), 2568–2571. https://doi.org/10.1016/j.biortech.2009.11.087
Duan, Z.-Q., Du, W., & Liu, D.-H. (2011). The mechanism of solvent effect on the positional selectivity of Candida antarctica lipase B during 1,3-diolein synthesis by esterification. Bioresource Technology, 102(23), 11048–11050. https://doi.org/10.1016/j.biortech.2011.09.003
Duan, Z.-Q., Du, W., & Liu, D.-H. (2012). Rational synthesis of 1,3-diolein by enzymatic esterification. Journal of Biotechnology, 159(1–2), 44–49. https://doi.org/10.1016/j.jbiotec.2012.02.006
Eilert, U., Wolters, B., & Nahrstedt, A. (1981). The Antibiotic Principle of Seeds of Moringa oleifera and Moringa stenopetala. Planta Medica, 42(05), 55–61. https://doi.org/10.1055/s-2007-971546
Fernandes, D. M., Sousa, R. M. F., De Oliveira, A., Morais, S. A. L., Richter, E. M., & Muñoz, R. A. A. (2015). Moringa oleifera: A potential source for production of biodiesel and antioxidant additives. Fuel, 146, 75–80. https://doi.org/10.1016/j.fuel.2014.12.081
Global Lipid Nutrition Market Valued At $6.2 Billion - Nutraceuticals World. (2017). Retrieved November 12, 2018, from https://www.nutraceuticalsworld.com/issues/2018-01/view_breaking-news/global-lipid-nutrition-market-valued-at-62-billion/1567
Go, A. W., Sutanto, S., Ismadji, S., & Ju, Y.-H. (2015). Catalyst free production of partial glycerides: acetone as solvent. RSC Advances, 5(39), 30833–30840. https://doi.org/10.1039/C5RA03249K
González Moreno, P. A., Robles Medina, A., Camacho Rubio, F., Camacho Páez, B., & Molina Grima, E. (2004). Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: Analysis of three different operation modes. Biotechnology Progress, 20(4), 1044–1052. https://doi.org/10.1021/bp034314c
Gudmundsdottir, A. V., Hansen, K. A., Magnusson, C. D., & Haraldsson, G. G. (2015). Synthesis of reversed structured triacylglycerols possessing EPA and DHA at their terminal positions. Tetrahedron, 71(45), 8544–8550. https://doi.org/10.1016/j.tet.2015.09.034
Guerrand, D. (2017). Lipases industrial applications: focus on food and agroindustries. OCL, 24(4), D403. https://doi.org/10.1051/ocl/2017031
Gunawan, S., & Ju, Y. H. (2009). Vegetable oil deodorizer distillate: Characterization, utilization and analysis. Separation and Purification Reviews, 38(3), 207–241. https://doi.org/10.1080/15422110903095151
Hartman, L. (1966). Esterification rates of some saturated and unsaturated fatty acids with glycerol. Journal of the American Oil Chemists’ Society, 43(9), 536–538. https://doi.org/10.1007/BF02679867
Hu, D., Chen, J., & Xia, Y. (2013). A comparative study on production of middle chain diacylglycerol through enzymatic esterification and glycerolysis. Journal of Industrial and Engineering Chemistry, 19(5), 1457–1463. https://doi.org/10.1016/j.jiec.2013.01.009
Hu, P., Xu, X., & Yu, L. L. (2017). Interesterified trans-free fats rich in sn-2 nervonic acid prepared using Acer truncatum oil, palm stearin and palm kernel oil, and their physicochemical properties. LWT - Food Science and Technology, 76, 156–163. https://doi.org/10.1016/j.lwt.2016.10.054
Jahurul, M. H. A., Zaidul, I. S. M., Nik Norulaini, N. A., Sahena, F., Abedin, M. Z., Mohamed, A., & Mohd Omar, A. K. (2014). Hard cocoa butter replacers from mango seed fat and palm stearin. Food Chemistry, 154, 323–329. https://doi.org/10.1016/j.foodchem.2013.11.098
Jardí Piñana, C., Aranda Pons, N., Bedmar Carretero, C., & Arija Val, V. (2015). Composición nutricional de las leches infantiles. Nivel de cumplimiento en su fabricación y adecuación a las necesidades nutricionales. Anales de Pediatría, 83(6), 417–429. https://doi.org/10.1016/j.anpedi.2015.03.003
Jennings, B. H., Shewfelt, R. L., & Akoh, C. C. (2010). Food applications of a rice bran oil structured lipid in fried sweet potato chips and an energy bar. Journal of Food Quality, 33(6), 679–692. https://doi.org/10.1111/j.1745-4557.2010.00355.x
Juan, J. C., Zhang, J., & Yarmo, M. A. (2008). Efficient Esterification of Fatty Acids with Alcohols Catalyzed by Zr(SO4)2 · 4H2O Under Solvent-Free Condition. Catalysis Letters, 126(3–4), 319–324. https://doi.org/10.1007/s10562-008-9622-2
Kadivar, S., De Clercq, N., Van de Walle, D., & Dewettinck, K. (2014). Optimisation of enzymatic synthesis of cocoa butter equivalent from high oleic sunflower oil. Journal of the Science of Food and Agriculture, 94(7), 1325–1331. https://doi.org/10.1002/jsfa.6414
Khaddaj-Mallat, R., Morin, C., & Rousseau, É. (2016). Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: Anti-inflammatory and anti-proliferative effects. European Journal of Pharmacology, 792(November), 70–77. https://doi.org/10.1016/j.ejphar.2016.10.038
Khatoon, S., & Reddy, S. R. Y. (2005). Plastic fats with zero trans fatty acids by interesterification of mango, mahua and palm oils. European Journal of Lipid Science and Technology, 107(11), 786–791. https://doi.org/10.1002/ejlt.200501210
Kim, B. H., & Akoh, C. C. (2015). Recent Research Trends on the Enzymatic Synthesis of Structured Lipids. Journal of Food Science, 80(8), C1713–C1724. https://doi.org/10.1111/1750-3841.12953
Kim, J., Chung, M., Choi, H.-D., Choi, I., & Kim, B. H. (2018). Enzymatic Synthesis of Structured Monogalactosyldiacylglycerols Enriched in Pinolenic Acid. Journal of Agricultural and Food Chemistry, 66(30), 8079–8085. https://doi.org/10.1021/acs.jafc.8b02599
Kong, P. S., Cognet, P., Peres, Y., Esvan, J., Wan Daud, W. M. A., & Aroua, M. K. (2018). Development of a novel hydrophobic ZrO2-SiO2 based acid catalyst for catalytic esterification of glycerol with oleic acid. Industrial and Engineering Chemistry Research, 57, 9386–9399. https://doi.org/10.1021/acs.iecr.8b01609
Kong, P. S., Pérès, Y., Wan Daud, W. M. A., Cognet, P., & Aroua, M. K. (2019). Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity. Frontiers in Chemistry, 7(April), 1–11. https://doi.org/10.3389/fchem.2019.00205
Korma, S. A., Zou, X., Ali, A. H., Abed, S. M., Jin, Q., & Wang, X. (2018). Preparation of structured lipids enriched with medium- and long-chain triacylglycerols by enzymatic interesterification for infant formula. Food and Bioproducts Processing, 107, 121–130. https://doi.org/10.1016/j.fbp.2017.11.006
Kotwal, M., Deshpande, S. S., & Srinivas, D. (2011). Esterification of fatty acids with glycerol over Fe-Zn double-metal cyanide catalyst. Catalysis Communications, 12(14), 1302–1306. https://doi.org/10.1016/j.catcom.2011.05.008
Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil - An economical source for biodiesel: A review. Industrial and Engineering Chemistry Research, 45(9), 2901–2913. https://doi.org/10.1021/ie0510526
Larsson, A., & Erlanson-Albertsson, C. (1986). Effect of phosphatidylcholine and free fatty acids on the activity of pancreatic lipase-colipase. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 876(3), 543–550. https://doi.org/10.1016/0005-2760(86)90042-1
Lauridsen, J. B. (1976). Food emulsifiers: Surface activity, edibility, manufacture, composition, and application. Journal of the American Oil Chemists’ Society, 53(6), 400–407. https://doi.org/10.1007/BF02605731
Lee, C., & Parkin, K. L. (2000). Comparative Fatty Acid Selectivity of Lipases in Esterification Reactions with Glycerol and Diol Analogues in Organic Media. Biotechnology Progress, 16(3), 372–377.
Lee, J. H., Son, J. M., Akoh, C. C., Kim, M. R., & Lee, K. (2010). Optimized synthesis of 1 , 3-dioleoyl-2- palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. New BIOTECHNOLOGY, 27(1), 38–45. https://doi.org/10.1016/j.nbt.2009.10.006
Lee, N. K., Oh, S. W., Kwon, D. Y., & Yoon, S. H. (2015). Production of 1, 3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Science and Biotechnology, 24(2), 433–437. https://doi.org/10.1007/s10068-015-0057-4
Lipid Market | Growth, Trends and Forecasts (2018-2023). (2018). Retrieved November 12, 2018, from https://www.mordorintelligence.com/industry-reports/lipid-market
Lipp, M., & Anklam, E. (1998). Review of cocoa butter and alternative fats for use in chocolate - Part A. Compositional data. Food Chemistry, 62(1), 73–97. https://doi.org/10.1002/lipi.19820840404
Liu, C., Zhang, Y., Zhang, X., Nie, K., Deng, L., & Wang, F. (2016). The two-step synthesis of 1,3-oleoyl-2-palmitoylglycerol by Candida sp. 99–125 lipase. Journal of Molecular Catalysis B: Enzymatic, 133, S1–S5. https://doi.org/10.1016/j.molcatb.2016.10.005
Liu, M., Fu, J., Teng, Y., Zhang, Z., Zhang, N., & Wang, Y. (2016). Fast Production of Diacylglycerol in a Solvent Free System via Lipase Catalyzed Esterification Using a Bubble Column Reactor. Journal of the American Oil Chemists’ Society, 93(5), 637–648. https://doi.org/10.1007/s11746-016-2804-y
Liu, S., Dong, X., Wei, F., Wang, X., Lv, X., Wu, L., … Chen, H. (2017). Lipase Catalyzed Synthesis of ABA-Type Structured Lipid from Single Cell Oil and Tripalmitin. Journal of Food Processing and Preservation, 41(2), 1–11. https://doi.org/10.1111/jfpp.12843
Lo, S. K., Baharin, B. S., Tan, C. P., & Lai, O. M. (2004). Diacylglycerols from Palm Oil Deodoriser Distillate. Part 1 – Synthesis by Lipase-catalysed Esterification. Food Science and Technology International, 10(3), 149–156. https://doi.org/10.1177/1082013204044826
Long, Z., Zhao, M., Liu, N., Liu, D., Sun-Waterhouse, D., & Zhao, Q. (2015). Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate. Food Chemistry, 184, 105–113. https://doi.org/10.1016/j.foodchem.2015.03.052
Lu, Jike, Deng, L., Nie, K., Wang, F., & Tan, T. (2012). Stability of Immobilized Candida sp. 99-125 Lipase for Biodiesel Production. Chemical Engineering & Technology, 35(12), 2120–2124. https://doi.org/10.1002/ceat.201200254
Lu, Jiyuan, Jin, Q., Wang, X., & Wang, X. (2017). Preparation of medium and long chain triacylglycerols by lipase-catalyzed interesterification in a solvent-free system. Process Biochemistry, 54, 89–95. https://doi.org/10.1016/j.procbio.2016.12.015
Mazubert, A., Poux, M., & Aubin, J. (2013). Intensified processes for FAME production from waste cooking oil: A technological review. Chemical Engineering Journal, 233, 201–223. https://doi.org/10.1016/j.cej.2013.07.063
Meng, Z., Lu, S., Geng, W., Huang, J., Wang, X., & Liu, Y. (2014). Preliminary Study on Acyl Incorporation and Migration in the Production of 1,3-diacylglycerol by Immobilized Lipozyme RM IM-catalyzed Esterification. Food Science and Technology Research, 20(2), 175–182. https://doi.org/10.3136/fstr.20.175
Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163(4), 408–418. https://doi.org/10.1016/j.jbiotec.2012.11.018
Morin, C., Rousseau, É., & Fortin, S. (2013). Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride in colorectal carcinoma cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 89(4), 203–213. https://doi.org/10.1016/j.plefa.2013.07.004
Mu, H., & Høy, C. E. (2001). Intestinal absorption of specific structured triacylglycerols. Journal of Lipid Research, 42(5), 792–798.
Nadeem, M., & Imran, M. (2016). Promising features of Moringa oleifera oil: Recent updates and perspectives. Lipids in Health and Disease, 15(1), 1–8. https://doi.org/10.1186/s12944-016-0379-0
Naik, B., & Kumar, V. (2014). Cocoa Butter and Its Alternatives: A Reveiw. Journal of Bioresource Engineering and Technology, 1(March 2014), 7–17.
Nieto, S., Sanhueza, J., & Valenzuela, A. (1999). Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei. Grasas y Aceites, 50(3), 199–202. https://doi.org/10.3989/gya.1999.v50.i3.656
Niewiadomski, P., & Pawlak, N. (2016). ANALYSIS OF RAW MATERIAL PARTICIPATION IN THE PRODUCTION PROCESS , PART II - PRACTICAL ASPECTS. Research in Logistics and Production, 6(1), 71–78.
Nitbani, F. O., Juminaa, Siswanta, D., & Solikhah, E. N. (2015). Reaction path synthesis of monoacylglycerol from fat and oils. International Journal of Pharmaceutical Sciences Review and Research, 35(1), 126–136.
Norn, V. (2015). Emulsifiers in Food Technology: Second Edition. Emulsifiers in Food Technology: Second Edition, 9780470670, 1–342. https://doi.org/10.1002/9781118921265
Oliveira, P. D., Rodrigues, A. M. C., Bezerra, C. V., & Silva, L. H. M. (2017). Chemical interesterification of blends with palm stearin and patawa oil. Food Chemistry, 215, 369–376. https://doi.org/10.1016/j.foodchem.2016.07.165
Ortiz, C., Ferreira, M. L., Barbosa, O., dos Santos, J. C. S., Rodrigues, R. C., Berenguer-Murcia, Á., … Fernandez-Lafuente, R. (2019). Novozym 435: the “perfect” lipase immobilized biocatalyst? Catalysis Science & Technology, 9(10), 2380–2420. https://doi.org/10.1039/C9CY00415G
Osborn, H. T., & Akoh, C. C. (2002). Structured lipids-novel fats with medical, nutraceutical, and food applications. Comprehensive Reviews in Food Science and Food Safety, 1(3), 110–120. https://doi.org/10.1111/j.1541-4337.2002.tb00010.x
Pafumi, Y., Lairon, D., de la Porte, P. L., Juhel, C., Storch, J., Hamosh, M., & Armand, M. (2002). Mechanisms of Inhibition of Triacylglycerol Hydrolysis by Human Gastric Lipase. Journal of Biological Chemistry, 277(31), 28070–28079. https://doi.org/10.1074/jbc.M202839200
Pfeffer, J., Freund, A., Bel-Rhlid, R., Hansen, C. E., Reuss, M., Schmid, R. D., & Maurer, S. C. (2007). Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale. Lipids, 42(10), 947–953. https://doi.org/10.1007/s11745-007-3084-y
Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008
Pradima, J., Kulkarni, M. R., & Archna. (2017). Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. Resource-Efficient Technologies, 3(4), 394–405. https://doi.org/10.1016/j.reffit.2017.02.009
Pufal, D. A., Quinlan, P. T., & Salter, A. M. (1995). Effect of dietary triacylglycerol structure on lipoprotein metabolism: A comparison of the effects of dioleoylpalmitoylglycerol in which palmitate is esterified to the 2-or 1(3)-position of the glycerol. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 1258(1), 41–48. https://doi.org/10.1016/0005-2760(95)00095-T
Rarokar, N. R., Menghani, S., Kerzare, D., & Khedekar, P. B. (2017). Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals. Journal of Experimental Food Chemistry, 03(03), 1–6. https://doi.org/10.4172/2472-0542.1000128
Remonatto, D., Santin, C. M. T., Valério, A., Lerin, L., Batistella, L., Ninow, J. L., … de Oliveira, D. (2015). Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound. Applied Biochemistry and Biotechnology, 176(3), 850–862. https://doi.org/10.1007/s12010-015-1615-1
Ribeiro, M. D. M. M., Ming, C. C., Lopes, T. I. B., Grimaldi, R., Marsaioli, A. J., & Gonçalves, L. A. G. (2017). Synthesis of structured lipids containing behenic acid from fully hydrogenated Crambe abyssinica oil by enzymatic interesterification. Journal of Food Science and Technology, 54(5), 1146–1157. https://doi.org/10.1007/s13197-017-2540-9
Robles, A., Jiménez, M. J., Esteban, L., González, P. A., Martín, L., Rodríguez, A., & Molina, E. (2011). Enzymatic production of human milk fat substitutes containing palmitic and docosahexaenoic acids at sn-2 position and oleic acid at sn-1,3 positions. LWT - Food Science and Technology, 44(10), 1986–1992. https://doi.org/10.1016/j.lwt.2011.05.022
Sánchez, D. A., Tonetto, G. M., & Ferreira, M. L. (2014). Enzymatic synthesis of 1,3-dicaproylglycerol by esterification of glycerol with capric acid in an organic solvent system. Journal of Molecular Catalysis B: Enzymatic, 100, 7–18. https://doi.org/10.1016/j.molcatb.2013.11.010
Sari, V. I., Hambali, E., Suryani, A., & Permadi, P. (2017). Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation. IOP Conference Series: Materials Science and Engineering, 172, 012062. https://doi.org/10.1088/1757-899X/172/1/012062
Setyaningsih, D., Wijayanti, P. L., & Muna, N. (2018). Application of mono-diacyl glycerol from palm oil by product as emulsifier for body scrub. IOP Conference Series: Earth and Environmental Science, 209(1). https://doi.org/10.1088/1755-1315/209/1/012047
Sharma, K., Negi, S., Thakur, N., & Kishore, K. (2017). Partial Glycerides - An Important Nonionic Surfactant for Industrial Ap- plications : An Overview. Journal of Biological and Chemical Chronicles, 3(1), 10–19.
Shimada, Y., Nagao, T., Hamasaki, Y., Akimoto, K., Sugihara, A., Fujikawa, S., … Tominaga, Y. (2000). Enzymatic synthesis of structured lipid containing arachidonic and palmitic acids. Journal of the American Oil Chemists’ Society, 77(1), 89–93. https://doi.org/10.1007/s11746-000-0014-8
Solaesa, Á. G., Sanz, M. T., Falkeborg, M., Beltrán, S., & Guo, Z. (2016). Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chemistry, 190, 960–967. https://doi.org/10.1016/j.foodchem.2015.06.061
Subroto, E., Supriyanto, Utami, T., & Hidayat, C. (2019). Enzymatic glycerolysis–interesterification of palm stearin–olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Science and Biotechnology, 28(2), 511–517. https://doi.org/10.1007/s10068-018-0462-6
Sun, S., Hou, X., & Hu, B. (2017). Synthesis of glyceryl monocaffeate using ionic liquids as catalysts. Journal of Molecular Liquids, 248, 643–650. https://doi.org/10.1016/j.molliq.2017.10.102
Sun, S., Hou, X., & Zhou, W. (2018). Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis. Journal of Molecular Liquids, 260, 92–98. https://doi.org/10.1016/j.molliq.2018.03.077
Sun, S., & Hu, B. (2017a). A novel method for the synthesis of glyceryl monocaffeate by the enzymatic transesterification and kinetic analysis. Food Chemistry, 214, 192–198. https://doi.org/10.1016/j.foodchem.2016.07.087
Sun, S., & Hu, B. (2017b). Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochemical Engineering Journal, 124, 78–87. https://doi.org/10.1016/j.bej.2017.05.002
Sun, S., Song, F., Bi, Y., Yang, G., & Liu, W. (2013). Solvent-free enzymatic transesterification of ethyl ferulate and monostearin: Optimized by response surface methodology. Journal of Biotechnology, 164(2), 340–345. https://doi.org/10.1016/j.jbiotec.2013.01.013
Takeuchi, H., Sekine, S., Kojima, K., & Aoyama, T. (2008). The application of medium-chain fatty acids: Edible oil with a suppressing effect on body fat accumulation. Asia Pacific Journal of Clinical Nutrition, 17(SUPPL. 1), 320–323. https://doi.org/10.6133/APJCN.2008.17.S1.79
Tan, H. W., Abdul Aziz, A. R., & Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118–127. https://doi.org/10.1016/j.rser.2013.06.035
Tangkam, K., Weber, N., & Wiege, B. (2008). Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining. Grasas y Aceites, 59(3), 245–253. https://doi.org/10.3989/gya.2008.v59.i3.515
Tchobo, F. P., Piombo, G., Pina, M., Soumanou, M. M., Pierre, V., & Sohounhloue, D. C. K. (2009). Enzymatic synthesis of cocoa butter equivalent through transesterification of Pentadesma butyracea butter. Journal of Food Lipids, 16(4), 605–617. https://doi.org/10.1111/j.1745-4522.2009.01169.x
Ting, R. R., Agapay, R., Angkawijaya, A. E., Tran Nguyen, P. L., Truong, C. T., & Ju, Y. (2019). Diglyceride production via noncatalyzed esterification of glycerol and oleic acid. Asia-Pacific Journal of Chemical Engineering, 14(6), 1–11. https://doi.org/10.1002/apj.2383
Torres, C. F., Martín, D., Torrelo, G., Casado, V., Fernández, O., Tenllado, D., … Reglero, G. (2011). Lipids as Delivery Systems to Improve the Biological Activity of Bioactive Ingredients. 160–169.
Touchstone, J. C. (1995). Thin-layer chromatographic procedures for lipid separation. Journal of Chromatography B: Biomedical Sciences and Applications, 671(1–2), 169–195. https://doi.org/10.1016/0378-4347(95)00232-8
Von Der Haar, D., Stäbler, A., Wichmann, R., & Schweiggert-Weisz, U. (2015). Enzyme-assisted process for DAG synthesis in edible oils. Food Chemistry, 176, 263–270. https://doi.org/10.1016/j.foodchem.2014.12.072
Vysakh, A., Ratheesh, M., Rajmohanan, T. P., Pramod, C., Premlal, S., Girish Kumar, B., & Sibi, P. I. (2014). Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action. International Immunopharmacology, 20(1), 124–130. https://doi.org/10.1016/j.intimp.2014.02.026
Wang, X., Chen, Y., Zheng, L., Jin, Q., & Wang, X. (2017). Synthesis of 1,3-distearoyl-2-oleoylglycerol by enzymatic acidolysis in a solvent-free system. Food Chemistry, 228, 420–426. https://doi.org/10.1016/j.foodchem.2017.01.146
Wang, X., Li, M., Wang, T., Jin, Q., & Wang, X. (2014). An improved method for the synthesis of 2-arachidonoylglycerol. Process Biochemistry, 49(9), 1415–1421. https://doi.org/10.1016/j.procbio.2014.05.021
Wang, Z., Du, W., Dai, L., & Liu, D. (2016). Study on Lipozyme TL IM-catalyzed esterification of oleic acid and glycerol for 1,3-diolein preparation. Journal of Molecular Catalysis B: Enzymatic, 127, 11–17. https://doi.org/10.1016/j.molcatb.2016.01.010
Wee, L. H., Lescouet, T., Fritsch, J., Bonino, F., Rose, M., Sui, Z., … Martens, J. A. (2013). Synthesis of monoglycerides by esterification of oleic acid with glycerol in heterogeneous catalytic process using tin-organic framework catalyst. Catalysis Letters, 143(4), 356–363. https://doi.org/10.1007/s10562-013-0970-1
Wei, W., Feng, Y., Zhang, X., Cao, X., & Feng, F. (2015). Synthesis of structured lipid 1,3-dioleoyl-2-palmitoylglycerol in both solvent and solvent-free system. LWT - Food Science and Technology, 60(2), 1187–1194. https://doi.org/10.1016/j.lwt.2014.09.013
Wei, W., Jin, Q., & Wang, X. (2019). Human milk fat substitutes: Past achievements and current trends. Progress in Lipid Research, 74(February), 69–86. https://doi.org/10.1016/j.plipres.2019.02.001
Williamson, S. T., Shahbaz, K., Mjalli, F. S., AlNashef, I. M., & Farid, M. M. (2017). Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renewable Energy, 114, 480–488. https://doi.org/10.1016/j.renene.2017.07.046
Willis, W. M., Lencki, R. W., & Marangoni, A. G. (1998). Lipid Modification Strategies in the Production of Nutritionally Functional Fats and Oils. Critical Reviews in Food Science and Nutrition, 38(8), 639–674. https://doi.org/10.1080/10408699891274336
Yang, K., Bi, Y., Sun, S., Yang, G., Ma, S., & Liu, W. (2014). Optimisation of Novozym-435-catalysed esterification of fatty acid mixture for the preparation of medium- and long-chain triglycerides (MLCT) in solvent-free medium. International Journal of Food Science and Technology, 49(4), 1001–1011. https://doi.org/10.1111/ijfs.12393
Yesiloglu, Y., & Kilic, I. (2004). Lipase-catalyzed esterification of glycerol and oleic acid. Journal of the American Oil Chemists’ Society, 81(3), 281–284. https://doi.org/10.1007/s11746-004-0896-5
Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1–16. https://doi.org/10.1016/S0960-8524(03)00040-3
Zhang, Yu, Wang, X., Zou, S., Xie, D., Jin, Q., & Wang, X. (2018). Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis. Bioresource Technology, 251(October 2017), 334–340. https://doi.org/10.1016/j.biortech.2017.12.025
Zhang, Z., Huang, H., Ma, X., Li, G., Wang, Y., Sun, G., … Li, A. J. (2017). Production of diacylglycerols by esterification of oleic acid with glycerol catalyzed by diatomite loaded SO42−/TiO2. Journal of Industrial and Engineering Chemistry, 53, 307–316. https://doi.org/10.1016/j.jiec.2017.05.001
Zhao, X., Sun, Q., Qin, Z., Liu, Q., & Kong, B. (2018). Ultrasonic pretreatment promotes diacylglycerol production from lard by lipase-catalysed glycerolysis and its physicochemical properties. Ultrasonics Sonochemistry, 48(May), 11–18. https://doi.org/10.1016/j.ultsonch.2018.05.005
Zhao, Y., Liu, J., Deng, L., Wang, F., & Tan, T. (2011). Optimization of Candida sp. 99-125 lipase catalyzed esterification for synthesis of monoglyceride and diglyceride in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 157–162. https://doi.org/10.1016/j.molcatb.2011.05.014
Zheng, M.-M., Huang, Q., Huang, F., Guo, P., Xiang, X., Deng, Q., … Zheng, C. (2014). Production of Novel “Functional Oil” Rich in Diglycerides and Phytosterol Esters with “One-Pot” Enzymatic Transesterification. Journal of Agricultural and Food Chemistry, 62(22), 5142–5148. https://doi.org/10.1021/jf500744n
Zhong, N., Li, L., Xu, X., Cheong, L., Zhao, X., & Li, B. (2010). Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chemistry, 122(1), 228–232. https://doi.org/10.1016/j.foodchem.2010.02.067
Zhou, S., Wang, Y., Jiang, Y., Zhang, Z., Sun, X., & Yu, L. L. (2017). Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice. Journal of Food Science, 82(8), 1968–1977. https://doi.org/10.1111/1750-3841.13789
Zou, X., Ali, A. H., Abed, S. M., & Guo, Z. (2017). Current knowledge of lipids in human milk and recent innovations in infant formulas. Current Opinion in Food Science, 16, 28–39. https://doi.org/10.1016/j.cofs.2017.06.010

QR CODE