簡易檢索 / 詳目顯示

研究生: 吳耀豐
Alchris - Woo Go
論文名稱: 利用混和溶劑(甲醇、水和乙酸)在次臨界狀態下生產生質柴油
BIODIESEL PRODUCTION UNDER SUBCRITICAL CONDITIONS USING SOLVENT MIXTURE OF METHANOL, WATER AND ACETIC ACID
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 吳慧莉
Felycia E. Soetaredjo
黃蓮香
Huynh Lien Huong
張志成
Truong Chi Thanh
王孟菊
Meng-Jiy Wang
劉志成
Jhy-Chern Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 248
中文關鍵詞: 甲醇轉酯化乙酸次臨界
外文關鍵詞: methanol, in-situ (trans)esterification, acetic acid, subcritical, water
相關次數: 點閱:291下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不論政治、經濟或環境等其他因素,利用可再生的替代能源,已經成為一種必然的趨勢。這主要是因為石油是有限的資源,以及人類不斷增加對能源的需求。生質柴油主要運用在運輸,重型設備和發電。為了跟上能源的需求,能成為可再生能源的原料都要善加利用。從這方面來看,目前的轉酯化技術通常限於使用單一原料而且原料品質的限制嚴苛。為了能最有效地利用再生資源,需要尋找可通用的轉酯化程序。

    本研究利用次臨界流體(甲醇,水和乙酸)開發新的轉酯化方法以生產生質柴油。 在次臨界條件下利用純油(大豆油)進行轉酯化以及利用種子(痲瘋樹,向日葵)和農業廢棄物(米糠)進行原位轉酯化(ISTE)生產生質柴油。

    本研究探討混合溶劑(甲醇,乙酸和水)對轉酯化的反應時間以及溫度的影響,並提出反應機制以解釋使用ISTE程序如何可提高產率。水在次臨界條件下之轉酯化反應中被發現能夠充當酸催化劑。另一方面乙酸不僅作為催化劑也可作為共同溶劑。當使用次臨界混合流體時,可使反應在較不嚴苛的溫度(250oC)和壓力(7 到 12 MPa)下進行,反應時間約1至2小時。

    在研究中也觀察到以前的研究中沒有深入探討的其他現象,例如以前研究中被忽略之反應器負載,本研究發現在次/超臨界條件下生產生質柴油時扮演重要腳色。最大化利用反應器體積可降低溶劑使用量並且減少或避免使用加壓氣體。另一個有趣的現象是稀釋效應,這可能是由於過量的甲醇、共溶劑或一定程度上的攪拌所造成的協同效應。

    本研究也探討幾種利用ISTE的方法,包括直接利用整顆種子或經過次臨界水預處理過的種子。發現此程序具有潛力,可得高脂肪酸甲酯產率(88∼98%)且能容忍高游離脂肪酸及水含量的原料。尤有甚者,本方式可同時生產其他產品和生物能源的原料。未來的生化精煉廠能夠以次臨界ISTE為可能的發展路徑之一。


    Regardless of the intentions, political, economic or environmental, the use of alternative and renewable fuels has now become a necessity and not a luxury. This is mainly due to depleting oil reserves and increasing energy demand. Biodiesel as a fuel source is important in transportation, heavy equipment operations, and energy source for electricity generation. To keep up with the demand for energy, a pool of feedstock needs to be utilized. In view of this, current technology for (trans)esterification is usually limited to the use of a single feedstock with a narrow range of specification. To realistically maximize the use of available resources, a robust and flexible (trans)esterification process is required.

    In this work, the use of subcritical fluids (methanol, water and acetic acid) were explored to develop new approaches in biodiesel production. (Trans)esterification reactions were carried out with both conventional and in-situ (trans)esterification (ISTE) methods under subcritical conditions, utilizing refined soybean oil and oil seeds/agricultural residue (Jatropha curcas, sunflower and rice bran) as feedstock.

    The effect of the solvent mixtures (methanol, acetic acid and/or water) on the reaction time and temperature was evaluated. A possible mechanism was also postulated for the improved and increased yields in ISTE. The presence of water in (trans)esterification reaction under subcritical condition was found to have acted as an acid catalyst. Acetic acid on the other hand acted not only as a catalyst, but also as a co-solvent. The presence of these components allowed reactions to be carried out under less severe operating temperature of 250 °C and pressures of 7 to 12 MPa over a reaction time of 1 to 2 hours.

    Several other phenomena were also observed in the study which were not considered in previous studies. For instance, reactor loading which is often overlooked in biodiesel experiments was found to be an important factor in sub/supercritical biodiesel production. The maximized utilization of the reactor volume allows the reduction of solvent required and avoids the use of pressurizing gas. Another interesting phenomena is the dilution effect which could result from a synergic effect by excess methanol, co-solvent and stirring.

    Several approaches in ISTE were also explored involving the direct utilization of whole kernels and wet subcritical water pretreated kernels. Results from the experiments are promising, achieving high FAME yields (88 to 98 %). The processes are capable of tolerating feedstock containing high amounts of FFA and moisture/water. Moreover, these approaches allow the co-production of other useful products and raw material for bioenergy production and may be possible routes for future bio-refinery platforms.

    Recommendation form ii Qualification form iii 摘要 v Abstract vii Acknowledgement ix Table of contents xi List of figures xvii List of tables xxiii List of abbreviations xxvii Chapter 1 1 Introduction 1 1.1 Background of the study 3 1.2 Objectives of the study 5 1.3 Scope and limitation 6 1.4 General Framework 6 Chapter 2 9 Review of related literature 9 2.1 Use of biodiesel as an alternative fuel 9 2.1.1 Advantages and disadvantages of using biodiesel 10 2.1.2 Global demand for fuels 11 2.1.3 Government policies (mandates and targets) 12 2.1.4 Challenges in biodiesel production 13 2.2 Biodiesel feedstock and methylation agent 14 2.2.1 Lipids and oils 14 2.2.1.1 Saponifiable and unsaponifiable lipids 15 2.2.1.2 Non-polar/Neutral lipids (Simple lipids) 15 2.2.1.3 Polar lipids (Complex lipids) 16 2.2.2 Seeds and agricultural residues 16 2.2.2.1 Jatropha curcas L. seeds (Physic nut) 19 2.2.2.2 Helianthus annuus seeds (Sunflower seeds) 23 2.2.2.3 Datura stramonium seeds (Thorn apple seeds) 24 2.2.2.4 Glycine max (Soybean) 25 2.2.2.5 Rice bran 25 2.2.3 Alkyl donors or acyl acceptors (methylation agent) 26 2.3 In-situ (trans)esterification (ISTE) 28 2.3.1 Acid/Base Catalyzed 29 2.3.2 Enzyme Catalyzed 36 2.3.3 Non-catalytic sub and supercritical solvents 39 2.4 Sub and supercritical fluids 42 2.4.1 Sub and supercritical methanol 44 2.4.2 Supercritical carbon dioxide (SC-CO2) 47 2.4.3 Subcritical water (SCW) 48 2.4.4 Subcritical acetic acid 50 2.5 Summary and conclusions 52 Chapter 3 55 Materials and Methods 55 3.1 Materials 55 3.2 Feedstock storage and characterization 56 3.2.1 Shells and kernel size 56 3.2.2 Moisture content 56 3.2.3 Crude lipid content 57 3.2.4 Free fatty acid content 57 3.2.5 Wax, gums and acylglyceride 58 3.2.6 Unsaponifiable matter 59 3.2.7 Theoretical FAME and fatty acid profile 59 3.3 Subcritical water (SCW) treatment 60 3.4 (Trans)esterification reactions 61 3.4.1 Subcritical solvent (trans)esterification of oil 62 3.4.2 In-situ (trans)esterification (ISTE) 63 3.5 Analysis of products and by-products 64 3.5.1 High temperature gas chromatography (HTGC) 65 3.5.2 Thin layer chromatography (TLC) 65 3.5.3 Gas chromatography - mass spectra detector (GC-MSD) 66 3.5.4 Characterization of hydrolysates from SCW treatment 66 3.5.5 Characterization of kernel residues after ISTE 67 3.5.6 Scanning electron microscope (SEM) 68 3.6 Statistical methods and analysis 68 3.6.1 Taguchi method for optimization 68 3.6.2 Grey relational analysis 69 3.7 Estimation of thermodynamic properties 70 3.7.1 Single pseudo-triglyceride 70 3.7.2 Constantinuo and Gani method of group contributions 71 3.7.3 Lorentz-Berthelot-type mixing rules 71 Chapter 4 73 Results and Discussions 73 4.1 Catalyst free esterification of fatty acids with methanol under subcritical condition 75 4.1.1 Effects of methanol loading 75 4.1.2 Effects of temperature on yield of non-catalytic esterification 78 4.1.3 Effects of water content on FAME yield 79 4.1.4 Comparison with conventional acid catalyzed esterification 82 4.1.5 Thermal stability of oleic acid and methyloleate 85 4.1.6 Comparison with other esterification methods 87 4.1.7 Conclusions 88 4.2 In-situ (trans)esterification of rice bran oil and co-extraction of bioactive compounds 89 4.2.1 Accumulation of FFAs during storage of rice bran 89 4.2.2 Effects of in-situ process on FAME yield and γ-oryzanol recovery 91 4.2.3 Comparison with other in-situ processes 93 4.2.4 Conclusions 94 4.3 In-situ (trans)esterification of Jatropha curcas L. seeds in subcritical solvent system 96 4.3.1 Characteristics of Jatropha curcas oil 96 4.3.2 Effects of methanol loading on FAME yield 97 4.3.3 Effects of acetic acid to methanol ratio on FAME yield 98 4.3.4 Effects of pressurizing gas and stirring on FAME yield 102 4.3.5 Effects of space loading and pressure on FAME yield 104 4.3.6 Effects of moisture content and added water on FAME yield 106 4.3.7 Comparison with other in-situ technologies 107 4.3.8 Conclusions 109 4.4 Applicability and mechanism of SCW treatment to enhance lipid extractability on oilseeds. 111 4.4.1 Effects of size reduction on lipid extractability 112 4.4.2 Effects of SCW treatment on different seeds 113 4.4.3 Effects of treatment time and water loading 119 4.4.4 Comparison with SCW treated microbial biomass 121 4.4.5 Phospholipid (PL) response to SCW treatment 122 4.4.6 Possible mechanism, advantage and disadvantage of SCW treatment 124 4.4.7 Conclusions 127 4.5 Biodiesel production under subcritical conditions using SCW treated whole Jatropha curcas seed kernels 130 4.5.1 Pretreatment of whole Jatropha curcas kernels 130 4.5.2 FAME yield of SCW treated kernels 131 4.5.3 Lowering process severity 134 4.5.4 Effect of stirring 137 4.5.5 Possible use of hydrolysate 137 4.5.6 Conclusions 140 4.6 Direct utilization of whole Jatropha curcas kernels and characterization of by-products 142 4.6.1 Direct in-situ transesterification of whole kernels 142 4.6.2 Comparison with other in-situ transesterification approaches 144 4.6.3 Qualitative analysis of reaction products 147 4.6.4 Characterization of hydrochars 151 4.6.5 Conclusions 153 4.7 (Trans)esterification of soybean oil with methanol and acetic acid under subcritical conditions 155 4.7.1 Effects of reactor loading and pressure 155 4.7.2 Effects of stirring and addition of acetic acid 158 4.7.3 Effects of SOR and amount of acetic acid in solvent 159 4.7.4 Effects of acetic acid to methanol ratio 162 4.7.5 Catalytic activity of acetic acid 164 4.7.6 Process evaluation 165 4.7.7 Conclusions 170 4.8 Taguchi method and grey relational analysis to maximize in-situ biodiesel production under subcritical conditions 171 4.8.1 Characteristics of feedstock 172 4.8.2 Preliminary evaluation of process parameters 172 4.8.3 Yield and productivity of FAME 175 4.8.4 Effects of water 178 4.8.5 Applicability to JCL kernels 179 4.8.6 Process intensification 181 4.8.7 Process evaluation 184 4.8.8 Conclusions 186 Chapter 5 188 Conclusions and Recommendations 188 5.1 Conclusions/Generalization 188 5.2 Recommendations and future prospects in biodiesel research 190 References 194 Appendix A 212 List of Figures 212 List of Tables 214 Appendix B 222 Estimations of thermodynamic properties 222 Single pseudo-triglyceride 222 Constantinuo-Gani group contribution 222 Curriculum Vitae 225 Education/Awards/Distinction 225 Experiences/Trainings 226 Scientific Publications 226 Conferences/Seminars/Sympossia Attended 227 Authorization (Copyright Transffer) 229

    [1] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel. 2001;80(2):225-31.
    [2] Kasim NS, Tsai TH, Gunawan S, Ju YH. Biodiesel production from rice bran oil and supercritical methanol. Bioresour Technol. 2009;100(8):2399-403.
    [3] Lim S, Hoong SS, Teong LK, Bhatia S. Supercritical fluid reactive extraction of Jatropha curcas L. seeds with methanol: A novel biodiesel production method. Bioresource Technol. 2010;101(18):7169-72.
    [4] Levine RB, Pinnarat T, Savage PE. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy & Fuels. 2010;24:5235-43.
    [5] Glisic SB, Orlović AM. Review of biodiesel synthesis from waste oil under elevated pressure and temperature: Phase equilibrium, reaction kinetics, process design and techno-economic study. Renewable and Sustainable Energy Reviews. 2014;31(0):708-25.
    [6] Levine RB, Bollas A, Savage PE. Process improvements for the supercritical in situ transesterification of carbonized algal biomass. Bioresource Technol. 2013;136(0):556-64.
    [7] Patil PD, Reddy H, Muppaneni T, Schaub T, Holguin FO, Cooke P, et al. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresource Technol. 2013;139(0):308-15.
    [8] Patil PD, Reddy H, Muppaneni T, Ponnusamy S, Cooke P, Schuab T, et al. Microwave-mediated non-catalytic transesterification of algal biomass under supercritical ethanol conditions. The Journal of Supercritical Fluids. 2013;79(0):67-72.
    [9] Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, et al. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technol. 2011;102(1):118-22.
    [10] Lim S, Lee KT. Effects of solid pre-treatment towards optimizing supercritical methanol extraction and transesterification of Jatropha curcas L. seeds for the production of biodiesel. Separation and Purification Technology. 2011;81(3):363-70.
    [11] Lim S, Lee K-T. Influences of different co-solvents in simultaneous supercritical extraction and transesterification of Jatropha curcas L. seeds for the production of biodiesel. Chemical Engineering Journal. 2013;221(0):436-45.
    [12] Lim S, Lee KT. Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction. Energy. 2014;68(0):71-9.
    [13] Lim S, Lee KT. Optimization of supercritical methanol reactive extraction by Response Surface Methodology and product characterization from Jatropha curcas L. seeds. Bioresource Technol. 2013;142(0):121-30.
    [14] Lim S, Lee KT. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study. Applied Energy. 2013;103(0):712-20.
    [15] Huynh LH, Nguyen PLT, Ho QP, Ju Y-H. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresource Technol. 2012;123:112-6.
    [16] Tsigie YA, Huynh LH, Ismadji S, Engida AM, Ju Y-H. In situ biodiesel production from wet Chlorella vulgaris under subcritical condition. Chemical Engineering Journal 2012;213:104-8.
    [17] Tsigie YA, Huynh LH, Nguyen PLT, Ju Y-H. Catalyst-free biodiesel preparation from wet Yarrowia lipolytica Po1g biomass under subcritical condition. Fuel Processing Technology. 2013;115:50-6.
    [18] Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev. 2012;16(4):2070-93.
    [19] Nitske WR, Wilson CM. Rudolf Diesel, Pioneer of the Age of Power: University of Oklahoma Press; 1965.
    [20] Banković-Ilić IB, Stojković IJ, Stamenković OS, Veljkovic VB, Hung Y-T. Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews. 2014;32(0):238-54.
    [21] Balat M, Balat H. Progress in biodiesel processing. Applied Energy. 2010;87(6):1815-35.
    [22] Kasim FH, Harvey AP, Zakaria R. Biodiesel production by in situ transesterification. Biofuels. 2010;1:1-11.
    [23] Schwab AW, Bagby MO, Freedman B. Diesel fuels from vegetable oils1986.
    [24] Sharma YC, Singh B. Development of biodiesel: Current scenario. Renew Sust Energ Rev. 2009;13(6-7):1646-51.
    [25] Goembira F, Saka S. Optimization of biodiesel production by supercritical methyl acetate. Bioresource Technol. 2013;131(0):47-52.
    [26] Goembira F, Matsuura K, Saka S. Biodiesel production from rapeseed oil by various supercritical carboxylate esters. Fuel. 2012;97(0):373-8.
    [27] Su E-Z, Xu W-Q, Gao K-L, Zheng Y, Wei D-Z. Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. Journal of Molecular Catalysis B: Enzymatic. 2007;48(1–2):28-32.
    [28] Fabbri D, Bevoni V, Notari M, Rivetti F. Properties of a potential biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel. 2007;86(5–6):690-7.
    [29] Su E-Z, Zhang M-J, Zhang J-G, Gao J-F, Wei D-Z. Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor. Biochemical Engineering Journal. 2007;36(2):167-73.
    [30] Ilham Z, Saka S. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresource Technol. 2009;100(5):1793-6.
    [31] Su E, You P, Wei D. In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production. Bioresource Technol. 2009;100(23):5813-7.
    [32] Saka S, Isayama Y. A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel. 2009;88(7):1307-13.
    [33] Saka S, Isayama Y, Ilham Z, Jiayu X. New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel. 2010;89(7):1442-6.
    [34] Warabi Y, Kusdiana D, Saka S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technol. 2004;91(3):283-7.
    [35] Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes. Fuel. 2010;89(1):1-9.
    [36] Hoekman SK, Robbins C. Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology. 2012;96(0):237-49.
    [37] Rahman SMA, Masjuki HH, Kalam MA, Abedin MJ, Sanjid A, Imtenan S. Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends. Journal of Cleaner Production. 2014;69(0):208-15.
    [38] Xin J, Imahara H, Saka S. Oxidation stability of biodiesel fuel as prepared by supercritical methanol. Fuel. 2008;87(10–11):1807-13.
    [39] Xin J, Imahara H, Saka S. Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel. 2009;88(2):282-6.
    [40] Bostyn S, Duval-Onen F, Porte C, Coic J-P, Fauduet H. Kinetic modelling of the degradation of the α-tocopherol in biodiesel-rape methyl ester. Bioresource Technol. 2008;99(14):6439-45.
    [41] B.P. Statistical Review of World Energy 2013. In: Energy BSRoW, editor.: British Petroleum; 2013.
    [42] B.P. BP Energy Outlook 2035. 2014.
    [43] Smith G. U.S. to be the top oil producer by 2015 on shale, IEA says. Bloomberg; 2013.
    [44] Johnston M, Holloway T. A global comparison of national biodiesel production potentials. Environ Sci Technol. 2007;41(23):7967-73.
    [45] Go A, Liu Y-T, Ju Y-H. Applicability of Subcritical Water Treatment on Oil Seeds to Enhance Extractable Lipid. Bioenerg Res. 2013:1-9.
    [46] Christie WW. What is a lipid? : AOCS Lipid Library; 2013.
    [47] Official Methods and Recommended Practices of the American Oil Chemists' Society: The Society; 1989.
    [48] Sawangkeaw R, Ngamprasertsith S. A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews. 2013;25:97-108.
    [49] Georgogianni KG, Kontominas MG, Pomonis PJ, Avlontis D, Gergis V. Alkaline conventiona and in situ transesterifictaion of cottonseed oil for the production of biodiesel. Energ Fuel. 2008;22:2110-5.
    [50] Georgogianni KG, Kontominas MG, Pomonis PJ, Avlontis D, Gergis V. Conventinal and insitu transesterification of sunflower seed oil for the production of biodiesel. Fuel Proc Technol. 2008;89:503-9.
    [51] Kaul S, Porwal J, Garg MO. Parametric study of jatropha seedsfor biodiesel production by reactive extraction. J Am Oil Chem Soc. 2010;87:903-8.
    [52] Shui P-J, Gunawan S, Hsieh W-H, Kasim NS, Ju Y-H. Biodiesel production frim rice bran by two-step in-situ process. Bioresour Technol. 2010;101:984-9.
    [53] Kasim FH. In Situ Transesterification of Jatropha Curcas for Biodiesel Production. United Kingdom: Newcastle University; 2012.
    [54] Kasim FH, Harvey AP. Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production. Chemical Engineering Journal. 2011;171(3):1373-8.
    [55] Kartika IA, Yani M, Ariono D, Evon P, Rigal L. Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step. Fuel. 2013;106(106):111-7.
    [56] Harrington K, D’Arcy-Evans C. A comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars. Journal of the American Oil Chemists Society. 1985;62(6):1009-13.
    [57] Harington KJ, D'Arcy-Evans C. Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev. 1985;24:314-8.
    [58] Siler-Marinkovic S, Tomasevic A. Transesterification of sunflower oil in situ. Fuel. 1998;77(12):1389-91.
    [59] Ginting MSA, Azizan MT, Yusup S. Alkaline in situ ethanolysis of Jatropha curcas. Fuel. 2012;93(1):82-5.
    [60] Qian JF, Yun Z. Cogeneration of Biodiesel and Nontoxic Cottonseed Meal from Cottonseed through in Situ Alkaline Transesterification. Energy & Fuels. 2009;23(1):507-12.
    [61] Hincapie G, Mondragon F, Lopez D. Conventional and in situ transesterifictaion of castor seed oil for biodiesel production. Fuel. 2011;90:1618-23.
    [62] Zakaria R, Harvey AP. Direct production of biodiesel from rapeseed by reactive extraction/in situ transesterification. Fuel Processing Technology. 2012;102(0):53-60.
    [63] Ozgul-Yucel S, Turkay S. FA monoalkylesters from rice bran oil by in situ esterification. Journal of the American Oil Chemists Society. 2003;80(1):81-4.
    [64] Zullaikah S, Simatupang EZ, Siregar RG, Rakhadima YT, Rachimoellah M. In Situ Production of Biodiesel from Rice Bran Oil under Subcritical Water and Methanol. 2014;11(6).
    [65] Lei H, Ding XF, Zhao JZ, Zhang HX, Li YL, Ma YJ, et al. In situ production of fatty acid ethyl ester from low quality rice bran. Fuel. 2011;90(2):592-7.
    [66] Lei H, Ding XF, Zhang HX, Chen X, Li YL, Zhang H, et al. In situ production of fatty acid methyl ester from low quality rice bran: An economical route for biodiesel production. Fuel. 2010;89(7):1475-9.
    [67] Jiang Y, Li D, Li Y, Gao J, Zhou L, He Y. In situ self-catalyzed reactive extraction of germinated oilseed with short-chained dialkyl carbonates for biodiesel production. Bioresource Technol. 2013;150(0):50-4.
    [68] Khang DS, Razon LF, Madrazo CF, Tan RR. In situ transesterification of coconut oil using mixtures of methanol and tetra hydrofuran. Chem Eng Res Des. 2014.
    [69] Kildiran G, Yucel S, Turkay S. In-situ alcoholysis of soybean oil. Journal of the American Oil Chemists’ Society. 1996;73(2):225-8.
    [70] Haas M, Scott K, Foglia T, Marmer W. The General Applicability of in Situ Transesterification for the Production of Fatty Acid Esters from a Variety of Feedstocks. J Amer Oil Chem Soc. 2007;84(10):963-70.
    [71] Haas M, Scott K, Marmer W, Foglia T. In situ alkaline transesterification: An effective method for the production of fatty acid esters from vegetable oils. J Amer Oil Chem Soc. 2004;81(1):83-9.
    [72] Haas M, Scott K. Moisture Removal Substantially Improves the Efficiency of in Situ Biodiesel Production from Soybeans. J Amer Oil Chem Soc. 2007;84(2):197-204.
    [73] Wyatt V, Haas M. Production of Fatty Acid Methyl Esters via the In Situ Transesterification of Soybean Oil in Carbon Dioxide-Expanded Methanol. J Amer Oil Chem Soc. 2009;86(10):1009-16.
    [74] Haas M, Wagner K. Substrate Pretreatment can Reduce the Alcohol Requirement During Biodiesel Production Via in Situ Transesterification. J Amer Oil Chem Soc. 2011;88(8):1203-9.
    [75] FAOSTAT. Production/Crops Processed. Food and Agricultural Organization of the United Nations Statistics Division; 2014.
    [76] Tambunan AH, Situmorang JP, Silip JJ, Joelianingsih A, Araki T. Yield and physicochemical properties of mechanically extracted crude Jatropha curcas L oil. Biomass and Bioenergy. 2012;43(0):12-7.
    [77] Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technol. 1996;58(1):77-82.
    [78] Joelianingsih, Tambunan AH, Nabetani H. Reactivity of Palm Fatty Acids for the Non-catalytic Esterification in a Bubble Column Reactor at Atmospheric Pressure. Procedia Chemistry. 2014;9(0):182-93.
    [79] Pradhan RC, Mishra S, Naik SN, Bhatnagar N, Vijay VK. Oil expression from Jatropha seeds using a screw press expeller. Biosystems Engineering. 2011;109(2):158-66.
    [80] Karaj S, Muller J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Industrial Crops and Products. 2011;34(1):1010-6.
    [81] Evon P, Amalia Kartika I, Cerny M, Rigal L. Extraction of oil from jatropha seeds using a twin-screw extruder: Feasibility study. Industrial Crops and Products. 2013;47(0):33-42.
    [82] Subroto E, Manurung R, Heeres HJ, Broekhuis AA. Mechanical extraction of oil from Jatropha curcas L. kernel: Effect of processing parameters. Industrial Crops and Products. (0).
    [83] Chapuis A, Blin J, Carre P, Lecomte D. Separation efficiency and energy consumption of oil expression using a screw-press: The case of Jatropha curcas L. seeds. Industrial Crops and Products. 2014;52(0):752-61.
    [84] Baldini M, Bulfoni E, Ferfuia C. Seed processing and oil quality of Jatropha curcas L. on farm scale: A comparison with other energy crops. Energy for Sustainable Development. 2014;19(0):7-14.
    [85] Salimon J, Ahmed WA. Physicochemical Characteristics of Tropical Jatropha curcas Seed Oil. Sains Malaysiana. 2012;41(3):313-7.
    [86] Ratree S. A preliminary study on physic nut (Jatropha curcas L.) in Thailand. Pakistan Journal of Biological Sciences. 2004;7(9):1620-3.
    [87] Oyekunle J, Omode A, Akinnifesi J. Physical Properties of Oils Extracted from Some Nigerian Non-Conventional Oilseeds. Journal of Applied Sciences. 2007;7:835-40.
    [88] Kumar Tiwari A, Kumar A, Raheman H. Biodiesel production from jatropha oil (< i> Jatropha curcas</i>) with high free fatty acids: An optimized process. Biomass and Bioenergy. 2007;31(8):569-75.
    [89] Abulude F, Ogunkoya M, Ogunleye R. Storage properties of oils of two Nigerian oil seeds Jatropha curcas (physic nut) and Helianthus annuus (sunflower). American Journal of Food Technology. 2007;2(3):207-11.
    [90] Kandpal J, Madan M. < i> Jatropha curcus</i>: a renewable source of energy for meeting future energy needs. Renewable energy. 1995;6(2):159-60.
    [91] Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B. Production of biodiesel from< i> Jatropha curcas</i> L. oil. Computers & Chemical Engineering. 2009;33(5):1091-6.
    [92] Patil PD, Deng S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel. 2009;88(7):1302-6.
    [93] Syam A, Yunus R, Ghazi T, Yaw T. Methanolysis of Jatropha oil in the presence of potassium hydroxide catalyst. Journal of Applied Sciences. 2009;9(17):3161-5.
    [94] Hawash S, Kamal N, Zaher F, Kenawi O, Diwani GE. Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel. 2009;88(3):579-82.
    [95] Berchmans HJ, Hirata S. Biodiesel production from crude< i> Jatropha curcas</i> L. seed oil with a high content of free fatty acids. Bioresource Technol. 2008;99(6):1716-21.
    [96] Martin C, Moure A, Martin G, Carrillo E, Dominguez H, Parajo JC. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy. 2010;34(4):533-8.
    [97] Worang RL, Dharmaputra OS, Syarief R. The quality of physic nut (Jatropha curcas L.) seeds packed in plastic material during storage. Biotropia. 2008;15(1):25-36.
    [98] Supamathanon N, Wittayakun J, Prayoonpokarach S. Properties of Jatropha seed oil from Northeastern Thailand and its transesterification catalyzed by potassium supported on NaY zeolite. Journal of Industrial and Engineering Chemistry. 2011;17(2):182-5.
    [99] Pereira MD, Dias DCFdS, Martins Filho S, Dias LAdS, Soriano PE. Physiological quality of physic nut (Jatropha curcas L.) seeds during storage. Journal of Seed Science. 2013;35(1):21-7.
    [100] Amalia Kartika I, Yani M, Ariono D, Evon P, Rigal L. Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step. Fuel. 2013;106(0):111-7.
    [101] Ani AY, Ishak MAN, Ismail K. Production of Biodiesel via In-situ Supercritical Methanol Transesterification. In: Stotcheva M, editor. Biodiesel-Feedstock and Processing Technologies: Intech; 2011. p. 229-46.
    [102] Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, Noshadi I. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: Optimization using response surface methodology. Bioresource Technol. 2013;136:565-73.
    [103] Hailegiorgis SM, shuhami/mahadzir, Subbarao D. Enhanced in situ ethanolysis of jatropha curcas L. in the prescence of cetylammonium bromide as a phase transfer catalyst. Renewable Energ. 2011;36:2502-7.
    [104] Hailegiorgis SM, shuhami/mahadzir, Subbarao D. Parametric study and optimization of in situ tranesterification of Jatropha curcas L. assisted by benzyltrimethylammonium hydroxide as a phase transfer catalyst via response surface methodology. Biomass Bioenerg. 2013;49:63-73.
    [105] Shuit SH, Lee KT, Kamaruddin AH, Yusup S. Reactive extraction and in situ etsterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel. 2010;89:527-30.
    [106] Shuit SH, Lee KT, Kamaruddin AH, Yusup S. Reactive extraction of Jatropha curcas L. seed for production of biodiesel: process optimization study. Environ Sci Technol. 2010;44(11):4361-7.
    [107] Makkar H, Becker K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. Journal of Agricultural and Food Chemistry. 1997;45(8):3152-7.
    [108] Perez EE, Carelli AA, Crapiste GH. Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering. 2011;105(1):180-5.
    [109] Dominguez H, Sineiro J, Nunez MJ, Lema JM. Enzymatic treatment of sunflower kernels before oil extraction. Food Research International. 1995;28(6):537-45.
    [110] Amalia Kartika I, Pontalier PY, Rigal L. Twin-screw extruder for oil processing of sunflower seeds: Thermo-mechanical pressing and solvent extraction in a single step. Industrial Crops and Products. 2010;32(3):297-304.
    [111] Amalia Kartika I, Pontalier PY, Rigal L. Extraction of sunflower oil by twin screw extruder: Screw configuration and operating condition effects. Bioresource Technol. 2006;97(18):2302-10.
    [112] Kartika IA, Pontalier PY, Rigal L. Oil extraction of oleic sunflower seeds by twin screw extruder: influence of screw configuration and operating conditions. Industrial Crops and Products. 2005;22(3):207-22.
    [113] Evon P, Vandenbossche V, Pontalier PY, Rigal L. Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility study and influence of operating conditions. Industrial Crops and Products. 2007;26(3):351-9.
    [114] Chen C-H, Chen W-H, Chang C-MJ, Lai S-M, Tu C-H. Biodiesel production from supercritical carbon dioxide extracted Jatropha oil using subcritical hydrolysis and supercritical methylation. The Journal of Supercritical Fluids. 2010;52(2):228-34.
    [115] Chen C-H, Chen W-H, Chang C-MJ, Setsu I, Tu C-H, Shieh C-J. Subcritical hydrolysis and supercritical methylation of supercritical carbon dioxide extraction of Jatropha oil. Separation and Purification Technology. 2010;74(1):7-13.
    [116] Shah S, Sharma A, Gupta M. Extraction of oil from< i> Jatropha curcas</i> L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technol. 2005;96(1):121-3.
    [117] Shah S, Sharma A, Gupta M. Extraction of oil from< i> Jatropha curcas</i> L. seed kernels by enzyme assisted three phase partitioning. Industrial crops and products. 2004;20(3):275-9.
    [118] Vyas AP, Subrahmanyam N, Patel PA. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel. 2009;88(4):625-8.
    [119] Sayyar S, Abidin ZZ, Yunus R, Muhammad A. Extraction of oil from Jatropha seeds-optimization and kinetics. American Journal of Applied Sciences. 2009;6(7):1390.
    [120] Kiriamiti HK, Rascol E, Marty A, Condoret JS. Extraction rates of oil from high oleic sunflower seeds with supercritical carbon dioxide. Chemical Engineering and Processing: Process Intensification. 2002;41(8):711-8.
    [121] Salgın U, Doker O, Calımlı A. Extraction of sunflower oil with supercritical CO2: Experiments and modeling. The Journal of Supercritical Fluids. 2006;38(3):326-31.
    [122] Fiori L. Supercritical extraction of sunflower seed oil: Experimental data and model validation. The Journal of Supercritical Fluids. 2009;50(3):218-24.
    [123] Nimet G, da Silva EA, Palu F, Dariva C, Freitas LdS, Neto AM, et al. Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: Experimental and modeling. Chemical Engineering Journal. 2011;168(1):262-8.
    [124] Boutin O, De Nadai A, Perez AG, Ferrasse J-H, Beltran M, Badens E. Experimental and modelling of supercritical oil extraction from rapeseeds and sunflower seeds. Chemical Engineering Research and Design. 2011;89(11):2477-84.
    [125] Ravber M, Knez Ž, Škerget M. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water. Food Chemistry. 2015;166(0):316-23.
    [126] Badr F, Sitohy M. Optimizing conditions for enzymatic extraction of sunflower oil. Grasas y aceites. 1992;43(5):281-3.
    [127] Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, et al. Jatropha bio-diesel production and use. Biomass and Bioenergy. 2008;32(12):1063-84.
    [128] Heller J. Physic Nut, Jatropha Curcas L: Bioversity international; 1996.
    [129] Jongschaap R, Corre W, Bindraban P, Brandenburg W. Claims and Facts on Jatropha curcas L. 2007.
    [130] Makkar HP, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel and value‐added coproducts. European Journal of Lipid Science and Technology. 2009;111(8):773-87.
    [131] Crocker M. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals: Royal Society of Chemistry; 2010.
    [132] Renner A, Zelt T, Gerteiser S. Global market study on Jatropha. Final Report Prepared for the World Wildlife Fund for Nature (WWF)(GEXSI, London). 2008.
    [133] Kalayasiri P, Jeyashoke N, Krisnangkura K. Survey of seed oils for use as diesel fuels. Journal of the American Oil Chemists’ Society. 1996;73(4):471-4.
    [134] Tong D, Hu C, Jiang K, Li Y. Cetane Number Prediction of Biodiesel from the Composition of the Fatty Acid Methyl Esters. J Amer Oil Chem Soc. 2011;88(3):415-23.
    [135] Chen Y-H, Chen J-H, Luo Y-M, Shang N-C, Chang C-H, Chang C-Y, et al. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants. Energy. 2011;36(7):4415-21.
    [136] Tomic M, Savin L, Micic R, Simikic M, Furman T. Possibility of using biodiesel from sunflower oil as an additive for the improvement of lubrication properties of low-sulfur diesel fuel. Energy. 2014;65(0):101-8.
    [137] Topaiboul S, Chollacoop N. Biodiesel as a lubricity additive for ultra low sulfur diesel. Songklanakarin J Sci Technol. 2010;32(2):153-6.
    [138] Ju Y-H, Zullaikah S. Effect of acid-catalyzed methanolysis on the bioactive components of rice bran oil. J Taiwan Inst Chem E. 2013;44(6):924-8.
    [139] Luh B, Barber S, Benedito de Barber C. Rice Bran: Chemistry and Technology. In: Luh B, editor. Rice: Springer US; 1991. p. 732-81.
    [140] Ghosh M. Review on recent trends in rice bran oil processing. J Amer Oil Chem Soc. 2007;84(4):315-24.
    [141] Takano K. Mechanism of lipid hydrolysis in rice bran. Cereal Foods World. 1993;38(9):695-8.
    [142] Zullaikah S, Lai C-C, Vali SR, Ju Y-H. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresource Technol. 2005;96(17):1889-96.
    [143] Isayama Y, Saka S. Biodiesel production by supercritical process with crude bio-methanol prepared by wood gasification. Bioresource Technol. 2008;99(11):4775-9.
    [144] Li Q, Xu J, Du W, Li Y, Liu D. Ethanol as the acyl acceptor for biodiesel production. Renewable and Sustainable Energy Reviews. 2013;25(0):742-8.
    [145] Ang GT, Tan KT, Lee KT. Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renewable and Sustainable Energy Reviews. 2014;31(0):61-70.
    [146] Dugan LR, Jr., McGinnis GW, Vadehra DV. Low temperature direct methylation of lipids in biological materials. Lipids. 1966;1(5):305-8.
    [147] Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Bioresource Technol. 2006;97:671-8.
    [148] BRDI. National Biofuels Action Plan. Biomass Research and Development Initiative; 2008.
    [149] Yustianingshi L, Zullaikah S, Ju Y-H. Ultrasound-assisted in-situ production of biodiesel from rice bran. J Energ Inst. 2009;82:133-7.
    [150] Ozgul-Yucel S, Turkay S. Varriables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J Am Oil Chem Soc. 2002;79:611-4.
    [151] Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN. The effects of catalysts in biodiesel production: A review. J Ind Eng Chem. 2013;19:14-26.
    [152] Zeng JL, Wang XD, Zhao B, Sun JC, Wang YC. Rapid In Situ Transesterification of Sunflower Oil. Industrial & Engineering Chemistry Research. 2009;48(2):850-6.
    [153] Qian JF, Wang F, Liu S, Yun Z. In situ alkaline transesterification of cottonseed oil fro prodcution of biodiesel and nontoxic cottonseed meal. Bioresour Technol. 2008;99:9009-12.
    [154] Haagenson D, Brudvik R, Lin H, Wiesenborn D. Implementing an In Situ Alkaline Transesterification Method for Canola Biodiesel Quality Screening. J Amer Oil Chem Soc. 2010;87(11):1351-8.
    [155] Qian J, Yang Q, Sun F, He M, Chen Q, Yun Z, et al. Cogeneration of biodiesel and nontoxic rapeseed meal from rapeseed through in-situ alkaline transesterification. Bioresource Technol. 2013;128(0):8-13.
    [156] Abo El-Enin SA, Attia NK, El-Ibiari NN, El-Diwani GI, El-Khatib KM. In-situ transesterification of rapeseed and cost indicators for biodiesel production. Renewable and Sustainable Energy Reviews. 2013;18(0):471-7.
    [157] Jairurob P, Phalakornkule C, Na-udom A, Petiraksakul A. Reactive extraction of after-stripping sterillized palm fruit to biodiesel. Fuel. 2013;107:282-9.
    [158] Dong T, Wang J, Miao C, Zheng Y, Chen S. Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresource Technol. 2013;136:8-15.
    [159] Gu H, Jiang Y, Zhou L, Gao J. Reactive extraction and in situ self-catalyzed methanolysis of germinated oilseed for biodiesel production. Energy & Environmental Science. 2011;4(4):1337-44.
    [160] Jiang Y, Gu H, Zhou L, Cui C, Gao J. Novel in Situ Batch Reactor with a Facile Catalyst Separation Device for Biodiesel Production. Industrial & Engineering Chemistry Research. 2012;51(46):14935-40.
    [161] Calixto F, Fernandes J, Couto R, Hernandez EJ, Najdanovic-Visak V, Simoes PC. Synthesis of fatty acid methyl estersvia direct transesterification with methanol/carbon dioxide mixtures from spent coffee grounds feedstock. Green Chemistry. 2011;13(5):1196-202.
    [162] Kurinawan A, Effendi C, Ong LK, Ju Y-H, Lin CX, Ismadji S. Novel, integrated biorefinery approach of Ceiba pentadra (Kapok) seed and its secondary waste. Sustainable Chem Eng. 2013;1(473-480).
    [163] Mandotra SK, Kumar P, Suseela MR, Ramteke PW. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresource Technol. 2014;156:42-7.
    [164] Chuck CJ, Lou-Hing D, Dean R, Sergeant LA, Scott RJ, Jenkins RW. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis. Energy. 2014;In Press:1-9.
    [165] Patil PD, Gude VG, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel. 2012;97:822-31.
    [166] Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, et al. Direct conversion of wet algae to crude biodiesel under supercritical under supercritical ethanol conditions. Fuel. 2014;115:720-6.
    [167] Goodwin RD. Methanol thermodynamic properties from 176 to 673 K at pressures to 700 bar. Journal of physical and chemical reference data. 1987;16(4):799-892.
    [168] Lucas S, Ferry D, Demirdjian B, Suzanne J. Vapor Pressure and Solid Phases of Methanol below Its Triple Point Temperature. The Journal of Physical Chemistry B. 2005;109(38):18103-6.
    [169] Sun TF, Schouten JA, Trappeniers NJ, Biswas SN. Accurate Measurement of the Melting Line of Methanol and Ethanol at Pressures up to 270 MPa. Berichte der Bunsengesellschaft fur physikalische Chemie. 1988;92(5):652-5.
    [170] Joback KG. MKS-03409: Effect of Pressure on the Melting Point. 2005.
    [171] Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol. 2004;91(3):289-95.
    [172] Imahara H, Minami E, Hari S, Saka S. Thermal stability of biodiesel in supercritical methanol. Fuel. 2008;87(1):1-6.
    [173] Cao W, Han H, Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel. 2005;84(4):347-51.
    [174] Tan KT, Lee KT, Mohamed AR. Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. The Journal of Supercritical Fluids. 2010;53(1–3):88-91.
    [175] Han H, Cao W, Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry. 2005;40(9):3148-51.
    [176] Imahara H, Xin J, Saka S. Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production. Fuel. 2009;88(7):1329-32.
    [177] Ju Y-H, Huynh LH, Tsigie YA, Ho Q-P. Synthesis of biodiesel in subcritical water and methanol. Fuel. 2012.
    [178] Du Z, Tang Z, Wang H, Zeng J, Chen Y, Min E. Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats. Chinese Journal of Catalysis. 2013;34(1):101-15.
    [179] Minami E, Saka S. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel. 2006;85(17–18):2479-83.
    [180] Alenezi R, Leeke GA, Santos RCD, Khan AR. Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chemical Engineering Research and Design. 2009;87(6):867-73.
    [181] Jackson M, King J. Methanolysis of seed oils in flowing supercritical carbon dioxide. Journal of the American Oil Chemists’ Society. 1996;73(3):353-6.
    [182] Ma Z, Shang ZY, Wang EJ, Xu JC, Xu QQ, Yin JZ. Biodiesel production via transesterification of soybean oil using acid catalyst in CO 2 expanded methanol liquids. Industrial and Engineering Chemistry Research. 2012;51(38):12199-204.
    [183] Yin J-Z, Xiao M, Song J-B. Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion and Management. 2008;49(5):908-12.
    [184] Wei C-Y, Huang T-C, Chen H-H. Biodiesel Production Using Supercritical Methanol with Carbon Dioxide and Acetic Acid. Journal of Chemistry. 2013;2013:6.
    [185] Tsai Y-T, Lin H-m, Lee M-J. Biodiesel production with continuous supercritical process: Non-catalytic transesterification and esterification with or without carbon dioxide. Bioresource Technol. 2013;145(0):362-9.
    [186] Sandler SI. Chemical, biochemical, and engineering thermodynamics: John Wiley & Sons Hoboken, NJ; 2006.
    [187] Wagner W, Saul A, Pruss A. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. Journal of Physical and Chemical Reference Data. 1994;23(3):515-27.
    [188] Pourali O, Salak Asghari F, Yoshida H. Simultaneous rice bran oil stabilization and extraction using sub-critical water medium. Journal of Food Engineering. 2009;95(3):510-6.
    [189] Huynh L-H, Kasim NS, Ju Y-H. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresource Technol. 2010;101(22):8891-6.
    [190] Tsigie YA, Huynh LH, Ahmed IN, Ju Y-H. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment. Bioresource Technol. 2012;111(0):201-7.
    [191] Uematsu M, Frank E. Static dielectric constant of water and steam. Journal of Physical and Chemical Reference Data. 1980;9(4):1291-306.
    [192] Weast RC, Astle MJ, Beyer WH. CRC handbook of chemistry and physics: CRC press Boca Raton, FL; 1988.
    [193] Kusdiana D, Saka S. Two-step preparation for catalyst-free biodiesel fuel production. Applied Biochemistry and Biotechnology. 2004;115(1-3):781-91.
    [194] Yuliana M, Nguyen-Thi BT, Faika S, Huynh LH, Soetaredjo FE, Ju Y-H. Separation and purification of cardol, cardanol and anacardic acid from cashew (Anacardium occidentale L.) nut-shell liquid using a simple two-step column chromatography. J Taiwan Inst Chem E. 2014;45(5):2187-93.
    [195] Sadasivam S, Manickam A. Biochemical Methods: New Age International Publishers; 1996.
    [196] Taguchi G, Organization AP. Introduction to quality engineering: designing quality into products and processes: The Organization; 1986.
    [197] Jeffrey Kuo C-F, Su T-L, Jhang P-R, Huang C-Y, Chiu C-H. Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing. Energy. 2011;36(5):3554-62.
    [198] Espinosa S, Fornari T, Bottini SB, Brignole EA. Phase equilibria in mixtures of fatty oils and derivatives with near critical fluids using the GC-EOS model. The Journal of Supercritical Fluids. 2002;23(2):91-102.
    [199] Poling BE, Prausnitz JM, O'Connell JP. The properties of gases and liquids: McGraw-Hill; 2001.
    [200] Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S. Continuous Production of Biodiesel via Transesterification from Vegetable Oils in Supercritical Methanol. Energy & Fuels. 2006;20(2):812-7.
    [201] Walas SM. 1 - Equations of State. In: Walas SM, editor. Phase Equilibria in Chemical Engineering: Butterworth-Heinemann; 1985. p. 1-107.
    [202] Pinnarat T, Savage PE. Noncatalytic esterification of oleic acid in ethanol. The Journal of Supercritical Fluids. 2010;53(1–3):53-9.
    [203] Aranda DG, Santos RP, Tapanes NO, Ramos A, Antunes O. Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catal Lett. 2008;122(1-2):20-5.
    [204] Zhang L, Xian M, He Y, Li L, Yang J, Yu S, et al. A Bronsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresource Technol. 2009;100(19):4368-73.
    [205] Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel. 2001;80(5):693-8.
    [206] Gerpen JV, Shanks B, Pruszko P, Clements D, Knothe G. Biodiesel Production Technology. National Renewable Energy Laboratory; 2004.
    [207] IAWPS. Release on the Ionization Constant of H2O. Lucerne (CH): International Association for the Properties of Water and Steam; 2007.
    [208] Shin H-Y, Ryu J-H, Park S-Y, Bae S-Y. Thermal stability of fatty acids in subcritical water. Journal of Analytical and Applied Pyrolysis. 2012;98(0):250-3.
    [209] Liang X. Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene. Energy. 2013;63(0):103-8.
    [210] Melo Júnior CAR, Albuquerque CER, Carneiro JSA, Dariva C, Fortuny M, Santos AF, et al. Solid-Acid-Catalyzed Esterification of Oleic Acid Assisted by Microwave Heating. Industrial & Engineering Chemistry Research. 2010;49(23):12135-9.
    [211] Chen C-R, Wang L-Y, Wang C-H, Ho W-J, Chang C-MJ. Supercritical carbon dioxide extraction of rice bran oil and column partition fractionation of γ-oryzanols. Separation and Purification Technology. 2008;61(3):358-65.
    [212] Xu Z, Godber JS. Comparison of supercritical fluid and solvent extraction methods in extracting γ-oryzanol from rice bran. J Amer Oil Chem Soc. 2000;77(5):547-51.
    [213] Gunawan S, Maulana S, Anwar K, Widjaja T. Rice bran, a potential source of biodiesel production in Indonesia. Industrial Crops and Products. 2011;33(3):624-8.
    [214] Sutanto S. In situ biodiesel production using Jatropha curcas kernels in subcritical solvent system. Taipei, Taiwan: National Taiwan University of Science and Technology; 2014.
    [215] Changi S, Matzger AJ, Savage PE. Kinetics and pathways for an algal phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) in high-temperature (175-350 [degree]C) water. Green Chemistry. 2012;14(10):2856-67.
    [216] Hensarling TP, Jacks TJ. Solvent extraction of lipids from soybeans with acidic hexane. Journal of the American Oil Chemists’ Society. 1983;60(4):783-4.
    [217] Tran Nguyen PL, Go AW, Huynh LH, Ju Y-H. A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids. Biomass and Bioenergy. 2013;59(0):532-9.
    [218] Liu Y-T. Production of biodiesel from Datura stramonium seeds. Taipei, Taiwan: National Taiwan University of Science and TEchnology; 2013.
    [219] Ramadan MF, Zayed R, El-Shamy H. Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food chemistry. 2007;103(3):885-90.
    [220] Zhang H, Han C, Wang M, Yang Q. Fatty acid components of oil from seeds of Datura stramonium L. . Acta Botanica Boreali-Ocidentalia Sin. 2008(24).
    [221] Alrawi RA, Ab Rahman NNN, Ahmad A, Ismail N, Mohd Omar AK. Characterization of Oily and Non-Oily Natural Sediments in Palm Oil Mill Effluent. Journal of Chemistry. 2013;2013:11.
    [222] Keegstra K. Plant Cell Walls. Plant Physiology. 2010;154(2):483-6.
    [223] Kollar R, Reinhold BB, Petrakova E, Yeh HJC, Ashwell G, Drgonova J, et al. Architecture of the Yeast Cell Wall: β(1→6)-GLUCAN INTERCONNECTS MANNOPROTEIN, β(1→3)-GLUCAN, AND CHITIN. Journal of Biological Chemistry. 1997;272(28):17762-75.
    [224] Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technol. 2011;102(19):9216-22.
    [225] Tsigie YA, Wang C-Y, Kasim NS, Diem Q-D, Huynh L-H, Ho Q-P, et al. Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate. Journal of Biomedicine and Biotechnology. 2012;2012:10.
    [226] Gubitz GM, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technol. 1999;67(1):73-82.
    [227] Lin R, Zhu Y, Tavlarides LL. Effect of thermal decomposition on biodiesel viscosity and cold flow property. Fuel. 2014;117, Part B(0):981-8.
    [228] Chen L-Y, Chen Y-H, Hung Y-S, Chiang T-H, Tsai C-H. Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. J Taiwan Inst Chem E. 2013;44(2):214-20.
    [229] Chen Y-H, Chiang T-H, Chen J-H. An optimum biodiesel combination: Jatropha and soapnut oil biodiesel blends. Fuel. 2012;92(1):377-80.
    [230] Mesroghli S, Jorjani E, Chehreh Chelgani S. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. International Journal of Coal Geology. 2009;79(1–2):49-54.
    [231] Sawangkeaw R, Bunyakiat K, Ngamprasertsith S. A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). The Journal of Supercritical Fluids. 2010;55(1):1-13.
    [232] Jiang J-J, Tan C-S. Biodiesel production from coconut oil in supercritical methanol in the presence of cosolvent. J Taiwan Inst Chem E. 2012;43(1):102-7.
    [233] Glišić SB, Skala DU. Phase transition at subcritical and supercritical conditions of triglycerides methanolysis. The Journal of Supercritical Fluids. 2010;54(1):71-80.
    [234] Kiwjaroun C, Tubtimdee C, Piumsomboon P. LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. Journal of Cleaner Production. 2009;17(2):143-53.
    [235] Wang L, Yang J. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel. 2007;86(3):328-33.
    [236] Wang L, He H, Xie Z, Yang J, Zhu S. Transesterification of the crude oil of rapeseed with NaOH in supercritical and subcritical methanol. Fuel Processing Technology. 2007;88(5):477-81.
    [237] Yin J-Z, Ma Z, Shang Z-Y, Hu D-P, Xiu Z-L. Biodiesel production from soybean oil transesterification in subcritical methanol with K3PO4 as a catalyst. Fuel. 2012;93(0):284-7.
    [238] Yin J-Z, Ma Z, Hu D-P, Xiu Z-L, Wang T-H. Biodiesel Production from Subcritical Methanol Transesterification of Soybean Oil with Sodium Silicate. Energy & Fuels. 2010;24(5):3179-82.
    [239] Yin J-Z, Xiao M, Wang A-Q, Xiu Z-L. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Conversion and Management. 2008;49(12):3512-6.
    [240] Marchetti JM, Errazu AF. Technoeconomic study of supercritical biodiesel production plant. Energy Conversion and Management. 2008;49(8):2160-4.
    [241] Marchetti JM. Influence of economical variables on a supercritical biodiesel production process. Energy Conversion and Management. 2013;75(0):658-63.
    [242] Villamide MJ, San Juan LD. Effect of chemical composition of sunflower seed meal on its true metabolizable energy and amino acid digestibility. Poultry Science. 1998;77(12):1884-92.
    [243] Makkar HPS, Aderibigbe AO, Becker K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chemistry. 1998;62(2):207-15.
    [244] U.S.E.I.A. International Energy Statistics. U.S. Energy Information Administration.
    [245] U.S.E.I.A. Monthly Energy Review. U.S. Energy Information Administration; 2014. p. 142.
    [246] Lane J. Biofuels Mandates Around the World: 2014. Biofuels Digest; 2013.

    QR CODE