簡易檢索 / 詳目顯示

研究生: 梅冠中
Kuan-Chung Mei
論文名稱: 基於電價激勵的智能電網需求響應研究
Price-Incentive Demand Response for Real-time Power Balancing
指導教授: 林士駿
Shih-Chun Lin
口試委員: 張縱輝
Tsung-Hui Chang
鍾偉和
Wei-Ho Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 需求響應價格激勵即時電價法最佳化方法
外文關鍵詞: Demand response, price incentive, real-time pricing, convex optimization
相關次數: 點閱:242下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在探討智慧電網中需求響應問題,而其主要概念為達到電網中電力之供需平衡。具體而言,我們考慮一電力公司集中管理一個社區內用戶之可控制型負載,此包括可延遲型負載(例如:洗衣機、洗碗機等)、可調控型負載(例如:電動車)與儲存型負載(例如:電池)等,為其規劃最佳化負載使用排程以達到電網平衡之目的。然而,電力公司在乎如何供電使效用最大且供電成本最低,而用戶則是關心如何安排用電以降低電費,這些用電問題會隨著不同的電源管理方式而產生不同的結果。我們站在配電公司角度思考如何設計一隨著時間變化之價格機制,使其服務之用戶能跟隨此價格做電源管理以達到電網中電力的供需平衡並減少配電公司自身之供電成本。為達此目的,本研究採用新興計價模式-即時電價法 (Real-time Pricing, RTP) 並結合了區塊傾斜費率 (Inclining Block Rates) 為電力公司設計一能夠減少電網供需失衡之電價模型,並使用此計價模式,求解用戶端之用電成本最小化的需求響應控制問題。模擬結果證明了我們提出的演算法能夠達到足夠良好的電力供需平衡,並且大幅減少了用戶們的電費支出。


Time-varying pricing is known able to in
uence customers' behavior in elec-
tricity usage , and has been used for peak load shedding in power grid. In
this thesis, we propose an price-incentive load management algorithm in or-
der to achieve real-time power balance in a neighborhood with several of load
customers and renewable energy sources (RES). To design a price model that
can improve the power balance, we consider real-time pricing combined with
inclining block rates tari s. In our problem formulation, we take into ac-
count di erent types of load models such as deferrable loads, storage devices,
and EVs. Thus, the research issue amounts to minimizing the electricity pay-
ment of users, subject to the individual constraints of the loads. The problem
can be solved by a linear programming method. Simulation results con rm
that the proposed algorithm can improve the power balance signi cantly.
By applying the price model combined with inclining block rates tari s, the
proposed pricing scheme drastically reduces the electricity payments of the
customers.

1 Background 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 System Models 6 2.1 Power Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Day-ahead Power Market . . . . . . . . . . . . . . . . . 7 2.1.2 Real-time Power Market . . . . . . . . . . . . . . . . . 7 2.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Controllable Loads Models . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Deferrable Loads . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Storage Model . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Electric Vehicles (EVs) . . . . . . . . . . . . . . . . . . 11 3 Existing Methods 13 3.1 The Demand Response Problem . . . . . . . . . . . . . . . . . 14 3.1.1 Power Balance Demand Response . . . . . . . . . . . . 14 3.1.2 Price-based Demand Response . . . . . . . . . . . . . . 17 3.1.3 Problem Formulation and Algorithm Description . . . 19 4 Proposed Method 23 4.1 Proposed Pricing Function with IBR . . . . . . . . . . . . . . 23 4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Approximation Method . . . . . . . . . . . . . . . . . . . . . . 28 5 Simulation Results and Discussions 34 5.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Performance of Various Demand Response Schemes . . . . . . 36 5.2.1 The Impact of Adopting Inclining Block Rates . . . . . 40 5.2.2 The Impact of Adopting Approximation Methods . . . 44 6 Conclusions and Future Directions 48 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 48

[1] A.-H. Mohsenian-Rad and A. Leon-Garcia, \Optimal residential load control with
price prediction in real-time electricity pricing environments," IEEE Trans. Smart
Grid, vol. 1, no. 2, pp. 120{133, Sep. 2010.
[2] K. Ma, T. Yao, J. Yang, and X. Guan, \Residential power scheduling for demand
response in smart grid," International Journal of Eletrical Power and Energy Systems,
vol. 78, pp. 320{325, June 2016.
[3] K.-H. Ng and G. B. Sheble, \Direct load control-a pro t-based load management
using linear programming," IEEE Transactions on Power Systems, vol. 13, no. 2, pp.
688{694, 1998.
[4] Y.-Y. Hsu and C.-C. Su, \Dispatch of direct load control using dynamic program-
ming," IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 1056{1061, 1991.
[5] S. Kishore and L. Snyder, \Control mechanisms for residential electricity demand
in smart- grids," in Proc. IEEE Int. Conf. on Smart Grid Commun., Gaithersburg,
MD, Oct. 4-6, 2010, pp. 443{448.
[6] P. Samadi, H. Mohsenian-Rad, V. W. S. Wong, and R. Schober, \Tackling the load
uncertainty challenges for energy consumption scheduling in smart grid," IEEE Trans.
Smart Grid, vol. 4, no. 2, pp. 1007{1016, June 2013.
[7] ||, \Real-time pricing for demand response based on stochastic approximation,"
IEEE TRANSACTIONS ON SMART GRID, vol. 5, pp. 789{798, 2014.
[8] N. Gatsis and G. B. Giannakis, \Residential load control: Distributed scheduling and
convergence with lost ami messages," IEEE TRANSACTIONS ON SMART GRID,
vol. 3, pp. 770{786, 2012.
[9] G. T. Costanzo, G. Zhu, M. F. Anjos, and G. Savard, \A system architecture for
autonomous demand side load management in smart buildings," IEEE Transactions
on Smart Grid, vol. 3, no. 4, pp. 2157{2165, 2012.
[10] J. V. Paatero and P. D. Lund, \A model for generating household electricity load
pro les," Int. J. Energy Res., vol. 30, pp. 273{290, 2006.
[11] N. Yaagoubi and H. T. Mouftah, \User-aware game theoretic approach for demand
management," IEEE TRANSACTIONS ON SMART GRID, vol. 6, pp. 716{725,
2015.
[12] S.-C. Tsai, Y.-H. Tseng, and T.-H. Chang, \Communication-e cient distributed de-
mand response: A randomized admm approach," accepted by IEEE Trans. Smart
Grid, 2015 (full paper).
[13] M. Alizadeh, A. Scaglione, and R. J. Thomas, \From packet to power switching:
Digital direct load scheduling," IEEE JSAC, vol. 30, no. 6, pp. 1027{1036, July 2012.
[14] T. T. Kim and H. V. Poor, \Scheduling power consumption with price uncertainty,"
IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 519{527, Sept. 2011.
[15] Z. Wang, C. Gu, F. Li, P. Bale, and H. Sun, \Active demand response using shared
energy storage for household energy management," IEEE Trans. Smart Grid, vol. 4,
no. 4, pp. 1888{1897, Dec. 2013.
[16] M. Huneault and F. D. Galiana, \A survey of the optimal power
ow literature,"
Porc. IEEE Power Systems, vol. 6, no. 2, pp. 762{770, May 1991.
[17] E. Litviniv, \Design and operation of the locational marginal prices-based electricity
markets," IET Generation, Transmission and Distribution, vol. 4, no. 2, pp. 315{323,
May 2010.
[18] T. Organogianni and G. Gross, \A general formulation for lmp evaluation," Porc.
IEEE Power Systems, vol. 22, no. 3, pp. 1163{1173, Aug. 2007.
[19] N. Li, L. Chen, and S. H. Low, \Optimal demand response based on utility max-
imization in power networks," in Proc. IEEE PES General Meeting, Detroit, MI,
USA, July 24-29, 2011, pp. 1{8.
[20] R. H. Kwon and D. Frances, \Optimization-based bidding in day-ahead electricity
auction markets: A review of models for power producers," in Handbook of Networks
in Power Systems I, Energy Systems, Springer-Verlag Berlin Heidelberg, 2012.
[21] T.-H. Chang, M. Alizadeh, and A. Scaglione, \Coordinated home energy management
for real-time power balancing," in Proc. IEEE PES General Meeting, San Diego, CA,
USA, July 22-26, 2012, pp. 1{8.
[22] M. Alizadeh, X. Li, Z. Wang, A. Scaglione, and R. Melton, \Demand side manage-
ment in the smart grid: Information processing for the power switch," IEEE Signal
Processing Magazine, vol. 59, no. 5, pp. 55{67, 2012.
[23] S. Sojoudi and S. H. Low, \Optimal charging of plug-in hybrids electric vehicles in
smart grids," Power and Energy Society General Meeting, pp. 1{6, 2011.
[24] L. Gan, U. Topcu, and S. H. Low, \Optimal decentralized protocol for electric vehicle
charging," IEEE Trans. on Power System, pp. 5798{5804, 2011.
[25] K. Rahbar, R. Zhang, and C. C. Chai, \Privacy constrained energy management for
self-interested microgrids," in IEEE Conf. ICASSP, Brisbane, Australia.
[26] N. Gatsis and G. B. Giannakis, \Residential load control: Distributed scheduling and
convergence with lost AMI messages," IEEE Trans. Smart Grid, vol. 2, no. 3, pp.
1{17, Feb. 2012.
[27] A performance calculator for gridconnected pv system. [Online]. Available:
http://www.nrel.gov/rredc/pvwatts
[28] T.-H. Chang, M. Alizadeh, and A. Scaglione, \Real-time power balancing via decen-
tralized coordinated home energy scheduling," IEEE Trans. Smart Grid, vol. 4, no. 3,
pp. 1490{1504, Sept. 2013.
[29] D. P. Bertsekas, Dynamic Programming and Optimal Control: Vol I. Nashua, NH,
USA: Athena Scienti c, 2007.

QR CODE