簡易檢索 / 詳目顯示

研究生: Aselefech Sorsa Wotango
Aselefech - Sorsa Wotango
論文名稱: Strategies to Develop Electrolyte Additives and Electrochemical Process for Enhanced Performance of Lithium Ion Batteries of Electrolytes and Graphite Anode
Strategies to Develop Electrolyte Additives and Electrochemical Process for Enhanced Performance of Lithium Ion Batteries of Electrolytes and Graphite Anode
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: Wei- Nien Su
Wei- Nien Su
Fu-Ming Wang
Fu-Ming Wang
Nae-Lih Wu
Nae-Lih Wu
Hong-Jie Dai
Hong-Jie Dai
Jyh-ChiangJia
Jyh-ChiangJia
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 148
中文關鍵詞: 電解液添加劑除水劑1-三甲基甲矽烷咪唑MCMB電極六氟磷酸鋰分解4-氯甲基-1.3.2- dioxathiolane-2-氧化物氟代碳酸乙烯酯(FEC)碳酸乙烯酯(EC)石墨剝落碳酸丙烯酯鈍性膜(SEI)協同效應電化學處理有機電解液
外文關鍵詞: Propylene Carbonate, Solid electrolyte interphase, graphite exfoliation, ethylene carbonate (EC), fluoroethylene carbonate (FEC), 4-(Chloromethyl)-1.3.2-dioxathiolane-2-oxide (CM, LiPF6 decomposition, 1-(Trimethylsilyl)imidazole, MCMB electrode, Water scavenger, Electrolyte additive, synergetic effect, Electrochemical treatment, Organic electrolyte.
相關次數: 點閱:426下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池電極上生成鈍性膜(solid liquid interface, SEI)的組成和形態對於電池的性能有顯著影響。微量雜質如水的存在是六氟磷酸鋰(LiPF6)裂解的主要原因。所分解產物進一步與水反應生成酸。這些非離子傳導性的產物沉積在SEI上,加上酸與SEI成分發生化學反應都將導致SEI特性的惡化。本論文旨在開發新型電解液添加劑和電化學處理程序,以減少水/酸等雜質對於電池系統效能的損害。主要係針對石墨負極,追求電解液添加劑的協同效用,以達高效和有效生成SEI膜,能對較寬的工作溫度範圍達到性能提升的目的。內文對於電解質添加劑和電化學處理方法對石墨電極的效果,SEI表面組成和電解液穩定性都做了深入的研究。
    考慮的氮矽(N- Si)鍵的路易斯鹼特性,提出1-三甲基甲矽烷咪唑(1-TMSI)作為一種新型的電解液除水添加劑,來抑制的六氟磷酸鋰的分解。通過實驗和密度泛函理論(DFT)計算,吾人針對1-TMSI對MCMB電極和電解質之間的除水能力,以及所產生的界面化學功效進行研究。核磁共振分析(NMR)顯示,通過0.2體積%1-TMSI的添加,可有效地抑制由水所造成的六氟磷酸鋰分解。以XPS表面分析表徵MCMB電極,發現1-TMSI的存在可降低六氟磷酸鋰分解所生成離子絕緣性產物的沉積。這些證據都指向使用1-TMSI添加劑的電池較未添加的電池,可藉由促進生成有較佳離子傳導性的鈍性膜(SEI),達到更好的性能表現。
    關於電解液添加劑的協同作用,乃針對常見的電解質成分的性質 -碳酸乙烯酯(EC)和氟代碳酸乙烯酯(FEC),探討添加 4-氯甲基-1,3,2- dioxathiolane -2-氧化物(CMDO)來改善前述成分的作法。MCMB電極因碳酸丙烯酯(PC)為主的電解液界面所產生的電極鈍化層,亦發現添加CMDO可以有效降低不可逆電容量的損失和形成較薄的鈍化膜。事實上,三種添加劑的組合起了關鍵作用,提高MCMB電極在較低溫或室溫環境下的可逆電容量。電化學測定分析顯示,通過使用三種添加劑的混合物,所形成的鈍性膜能讓鋰離子更容易地嵌入嵌出。
    通過對電解液施加定電位的電化學處理程序,可避免有機電解液中的水雜質所致的負面影響。電化學處理後,刻意摻水的電解質中所測量的水量顯著下降。此外,處理後的Li/ MCMB電池的電化學測試中亦顯示,可對產生Li/ MCMB電池的特性產生積極的作用,並藉以改善Li/MCMB電池的性能,顯示此電化學處理程序可避免有機電解液中水雜質,具有發展潛力。


    The composition and morphology of solid electrolyte interphase (SEI) plays a significant role on the performance of lithium ion batteries. The presence of trace impurities such as water causes decomposition of LiPF6. The decomposed product further reacts with water and leading to form acid. The deposition of ionic insulating products on SEI and the reaction of acid with SEI components cause SEI deterioration. In this work, electrolyte additive and electrochemical process have been developed to reduce water/acid impurities and minimize their effect to overall degradation of cell system. In addition, synergetic effect of electrolyte additives is achieved for efficient and effective SEI former to enhance performance of graphite electrode for wide temperature range. The effect of electrolyte additives and electrochemical process on the performance of graphite electrode, surface composition and electrolyte stability have been investigated in detail.

    Considering the Lewis-base feature of N-Si bond, 1-(Trimethylsilyl)imidazole (1-TMSI) is proposed as a novel water scavenging electrolyte additive to suppress LiPF6 decomposition. The scavenging ability of 1-TMSI and beneficiary interfacial chemistry between the MCMB electrode and electrolyte are studied through a combination of experiments and density functional theory (DFT) calculations. NMR analysis indicated that LiPF6 decomposition by water was effectively suppressed in the presence of 0.2 vol % 1-TMSI. XPS surface analysis of MCMB electrode showed that the presence of 1-TMSI reduced deposition of ionic insulating products caused by LiPF6 decomposition. The results showed that the cells with 1-TMSI additive have better performance than the cell without 1-TMSI by facilitating the formation of solid-electrolyte interphase (SEI) layer with better ionic conductivity.
    Synergetic effect of electrolyte additives was explored. 4-(Chloromethyl)-1,3,2-dioxathiolane-2-oxide (CMDO) was prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of efficient passivation layer in Propylene Carbonate (PC)-based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity and induces thin SEI formation. In fact, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed by using a mixture of the three additives gave better intercalation-deintercalation of lithium ions.
    The electrochemical treatment process was performed by applying voltage to avoid water impurity from organic electrolyte. After electrochemical treatment, the electrolyte with intentionally added water showed the measured water amount was significantly decreased. In addition, the electrochemical performance test of Li/MCMB cells showed that the electrochemical treatment has a positive effect on the electrolyte to improve the performance of Li/MCMB cells. The electrochemical treatment method is promising in avoiding water impurity from organic electrolyte.

    Abstract………………………………………………………………………………………iii Acknowledgementv Table of contentsviii List of Figuresxii List of Schemesxvi List of Tablesxvii List of Abbreviationxviii Chapter 1 Introduction1 1.1General Introduction1 1.2Lithium Ion Batteries3 1.3Motivation and the Scope of this Study7 1.3.1Motivation7 1.3.2Issues in Lithium Ion Batteries7 1.3.3Aims and Objectives of the Study8 1.3.4Dissertation Structure8 Chapter 2Literature Review on the Main Components of Lithium Ion Batteries10 2.1Cathodes Material for Lithium Ion Batteries10 2.1.1Layered Oxide Cathodes10 2.1.2Spinel Cathodes12 2.1.3Olivine Cathodes14 2.2Anodes Material for Lithium Ion Batteries14 2.2.1Carbon Anode15 2.2.2Intercalation-Deintercalation Anodes (other than carbon)19 2.2.3Alloying/De-alloying Anodes19 2.2.4Conversion (redox) Anodes20 2.3Electrolytes for Lithium Ion Batteries21 2.3.1Solvents21 2.3.2Salts23 2.3.3Solid Electrolyte Interphase (SEI)24 2.4Electrolyte Additives26 2.4.1Additives for Solid Electrolyte Interphase former on Graphite Electrode26 2.4.2Water/acid Scavenger Electrolyte Additives29 Chapter 3Experimental Methods32 3.1Chemicals and reagents32 3.1.1Preparation of electrolytes33 3.1.2Synthesis of additive34 3.1.3Preparation of graphite electrode34 3.1.4Preparation of LiMn2O4 electrode34 3.2Electrochemical Measurements35 3.2.1Battery Test35 3.2.2Cyclic Voltammetry (CV)37 3.2.3Electrochemical Impedance Spectroscopy (EIS)39 3.3Material Characterizations40 3.3.1X-Ray Photoelectron Spectroscopy (XPS)40 3.3.2Scanning Electron Microscope (SEM)41 3.3.3Nuclear Magnetic Resonance (NMR) Spectroscopy42 3.4Density Functional Theory (DFT) Calculations44 Chapter 4Improved interfacial properties of MCMB electrode by 1-(Trimethylsilyl)imidazole as new electrolyte additive to suppress LiPF6 decomposition45 4.1Background of the study45 4.2Results and discussion48 4.2.1Electrolyte storage48 4.2.2Electrochemistry51 4.2.3Surface Characterization58 4.2.4Computational calculation62 4.2.5Mechanism of 1-TMSI with Water/acid63 4.3Conclusion67 Chapter 5Designed synergetic effect of electrolyte additives as effective Solid Electrolyte Interphase former for enhanced low and room temperature performance of MCMB electrode in Propylene Carbonate-based electrolyte.68 5.1Background of the study68 5.2Results and discussion70 5.2.1Electrochemical characterization70 5.2.2Surface analysis85 5.3Conclusion93 Chapter 6Electrochemical treatment method to enhance performance of LiPF6-based electrolytes for lithium ion batteries.94 6.1Background of the study94 6.2Results and discussion95 6.3Conclusion101 Chapter 7Conclusions and recommendations102 7.1Summary and Conclusions102 7.2Recommendations105 Appendix A Supporting data for Chapter 4106 Appendix B Supporting data for Chapter 5112 References……………………………………………………………………………………..119

    [1] N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angewandte Chemie International Edition, 51 (2012) 9994-10024.
    [2] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat Mater, 7 (2008) 845-854.
    [4] J.B. Goodenough, H.D. Abruna, M.V. Buchanan, Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007, in, 2007, pp. Medium: ED.
    [5] M.R. Palacin, Recent advances in rechargeable battery materials: a chemist's perspective, Chemical Society Reviews, 38 (2009) 2565-2575.
    [6] A.M. Bernardes, D.C.R. Espinosa, J.A.S. Tenório, Recycling of batteries: a review of current processes and technologies, Journal of Power Sources, 130 (2004) 291-298.
    [7] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, 104 (2004) 4245-4270.
    [8] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [9] B. Scrosati, Recent advances in lithium ion battery materials, Electrochimica Acta, 45 (2000) 2461-2466.
    [10] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, 147 (2005) 269-281.
    [11] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nat Commun, 6 (2015).
    [12] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, Journal of The Electrochemical Society, 134 (1987) 1611-1620.
    [13] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303-4418.
    [14] M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries: Science and Technologies, Springer New York, 2009.
    [15] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density, Solid State Ionics, 3–4 (1981) 171-174.
    [16] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148 (2002) 405-416.
    [17] W. van Schalkwijk, B. Scrosati, Advances in lithium-ion batteries, Springer Science & Business Media, 2007.
    [18] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat Mater, 4 (2005) 366-377.
    [19] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
    [20] S.-T. Myung, Y. Hitoshi, Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries, Journal of Materials Chemistry, 21 (2011) 9891-9911.
    [21] M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering: R: Reports, 33 (2001) 109-134.
    [22] M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chemical Reviews, 113 (2013) 5364-5457.
    [23] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
    [24] F.F.C. Bazito, R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials, Journal of the Brazilian Chemical Society, 17 (2006) 627-642.
    [25] P. He, H. Yu, D. Li, H. Zhou, Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries, Journal of Materials Chemistry, 22 (2012) 3680-3695.
    [26] P. Rozier, J.M. Tarascon, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, Journal of The Electrochemical Society, 162 (2015) A2490-A2499.
    [27] W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries, Angewandte Chemie International Edition, 54 (2015) 4440-4457.
    [28] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
    [29] M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 104 (2004) 4271-4302.
    [30] P. Kalyani, N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review, Science and Technology of Advanced Materials, 6 (2005) 689-703.
    [31] Z. Liu, A. Yu, J.Y. Lee, Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries, Journal of Power Sources, 81–82 (1999) 416-419.
    [32] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, 192 (2015) 3-25.
    [33] Y. Zhang, Y. Li, X. Xia, X. Wang, C. Gu, J. Tu, High-energy cathode materials for Li-ion batteries: A review of recent developments, Science China Technological Sciences, 58 (2015) 1809-1828.
    [34] R. Robert, C. Villevieille, P. Novak, Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries, Journal of Materials Chemistry A, 2 (2014) 8589-8598.
    [35] S. Dou, Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries, Ionics, 21 (2015) 3001-3030.
    [36] X. Li, Y. Xu, C. Wang, Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode, Journal of Alloys and Compounds, 479 (2009) 310-313.
    [37] D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C.M. Julien, J.B. Goodenough, K. Zaghib, Spinel materials for high-voltage cathodes in Li-ion batteries, RSC Advances, 4 (2014) 154-167.
    [38] C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics, 2 (2014) 132-154.
    [39] Y. Wang, P. He, H. Zhou, Olivine LiFePO4: development and future, Energy & Environmental Science, 4 (2011) 805-817.
    [40] D. Li, H. Zhou, Two-phase transition of Li-intercalation compounds in Li-ion batteries, Materials Today, 17 (2014) 451-463.
    [41] B.L. Ellis, K.T. Lee, L.F. Nazar, Positive Electrode Materials for Li-Ion and Li-Batteries, Chemistry of Materials, 22 (2010) 691-714.
    [42] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, 135 (2013) 1167-1176.
    [43] K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang, Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route, Journal of Materials Chemistry, 14 (2004) 2690-2695.
    [44] R. Yazami, P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, Journal of Power Sources, 9 (1983) 365-371.
    [45] H. Li, Z. Wang, L. Chen, X. Huang, Research on Advanced Materials for Li-ion Batteries, Advanced Materials, 21 (2009) 4593-4607.
    [46] Y. Nishi, The development of lithium ion secondary batteries, The Chemical Record, 1 (2001) 406-413.
    [47] C. de las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, 208 (2012) 74-85.
    [48] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, 10 (1998) 725-763.
    [49] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443.
    [50] Y. Tang, L. Yang, Z. Qiu, J. Huang, Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries, Journal of Materials Chemistry, 19 (2009) 5980-5984.
    [51] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, 4 (2011) 3243-3262.
    [52] H. Tian, F. Xin, X. Wang, W. He, W. Han, High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries, Journal of Materiomics, 1 (2015) 153-169.
    [53] M.M. Thackeray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L. Fransson, K. Edstrom, Structural considerations of intermetallic electrodes for lithium batteries, Journal of Power Sources, 113 (2003) 124-130.
    [54] J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, 22 (2010) E170-E192.
    [55] S.-I. Lee, U.-H. Jung, Y.-S. Kim, M.-H. Kim, D.-J. Ahn, H.-S. Chun, A study of electrochemical kinetics of lithium ion in organic electrolytes, Korean Journal of Chemical Engineering, 19 (2002) 638-644.
    [56] D.S. Hall, J. Self, J.R. Dahn, Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate, The Journal of Physical Chemistry C, 119 (2015) 22322-22330.
    [57] S. Nowak, M. Winter, Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned, Journal of The Electrochemical Society, 162 (2015) A2500-A2508.
    [58] X. Zhang, R. Kostecki, T.J. Richardson, J.K. Pugh, P.N. Ross, Electrochemical and Infrared Studies of the Reduction of Organic Carbonates, Journal of The Electrochemical Society, 148 (2001) A1341-A1345.
    [59] M. He, C.-C. Su, C. Peebles, Z. Feng, J.G. Connell, C. Liao, Y. Wang, I.A. Shkrob, Z. Zhang, Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells, ACS Applied Materials & Interfaces, 8 (2016) 11450-11458.
    [60] M.E. Spahr, T. Palladino, H. Wilhelm, A. Würsig, D. Goers, H. Buqa, M. Holzapfel, P. Novák, Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes, Journal of The Electrochemical Society, 151 (2004) A1383-A1395.
    [61] J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, M. Schmidt, LiPF3 (  CF 2 CF 3 ) 3 :  A Salt for Rechargeable Lithium Ion Batteries, Journal of The Electrochemical Society, 150 (2003) A445-A454.
    [62] N. Membreño, K. Park, J.B. Goodenough, K.J. Stevenson, Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive, Chemistry of Materials, 27 (2015) 3332-3340.
    [63] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
    [64] T.R. Jow, K. Xu, O. Borodin, U. Makoto, Electrolytes for lithium and lithium-ion batteries, Springer, 2014.
    [65] E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
    [66] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [67] A. Zaban, E. Zinigrad, D. Aurbach, Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li−Solution Interphase in Polar Aprotic Systems, The Journal of Physical Chemistry, 100 (1996) 3089-3101.
    [68] V.A. Agubra, J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, 268 (2014) 153-162.
    [69] D. Zhang, B.S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, B.N. Popov, Studies on capacity fade of lithium-ion batteries, Journal of Power Sources, 91 (2000) 122-129.
    [70] J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature, Journal of Power Sources, 112 (2002) 222-230.
    [71] G. Ning, B. Haran, B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates, Journal of Power Sources, 117 (2003) 160-169.
    [72] M. Winter, The solid electrolyte interphase - The most important and the least understood solid electrolyte in rechargeable Li batteries, Zeitschrift fur Physikalische Chemie, 223 (2009) 1395-1406.
    [73] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 162 (2006) 1379-1394.
    [74] N.-S. Choi, J.-G. Han, S.-Y. Ha, I. Park, C.-K. Back, Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries, RSC Advances, 5 (2015) 2732-2748.
    [75] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
    [76] M. Mohamedi, D. Takahashi, T. Itoh, I. Uchida, Electrochemical stability of thin film LiMn2O4 cathode in organic electrolyte solutions with different compositions at 55 °C, Electrochimica Acta, 47 (2002) 3483-3489.
    [77] J. Jiang, H. Fortier, J.N. Reimers, J.R. Dahn, Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt, Journal of The Electrochemical Society, 151 (2004) A609-A613.
    [78] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, 47 (2002) 1423-1439.
    [79] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode, Journal of The Electrochemical Society, 151 (2004) A1659-A1669.
    [80] Y. Zhu, Y. Li, M. Bettge, D.P. Abraham, Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2–graphite cells, Electrochimica Acta, 110 (2013) 191-199.
    [81] H. Shin, J. Park, A.M. Sastry, W. Lu, Effects of Fluoroethylene Carbonate (FEC) on Anode and Cathode Interfaces at Elevated Temperatures, Journal of The Electrochemical Society, 162 (2015) A1683-A1692.
    [82] X. Zhao, Q.C. Zhuang, S.D. Xu, Y.X. Xu, Y.L. Shi, X.X. Zhang, A new insight into the content effect of fluoroethylene carbonate as a film forming additive for lithium-ion batteries, International Journal of Electrochemical Science, 10 (2015) 2515-2534.
    [83] L. Liao, P. Zuo, Y. Ma, Y. An, G. Yin, Y. Gao, Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode, Electrochimica Acta, 74 (2012) 260-266.
    [84] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, 28 (2012) 965-976.
    [85] S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, Z. Ogumi, Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries:  Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions, Langmuir, 17 (2001) 8281-8286.
    [86] K.M. Kim, N.V. Ly, J.H. Won, Y.-G. Lee, W.I. Cho, J.M. Ko, R.B. Kaner, Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives, Electrochimica Acta, 136 (2014) 182-188.
    [87] S. Jurng, H.-s. Kim, J.G. Lee, J.H. Ryu, S.M. Oh, Low-Temperature Characteristics and Film-Forming Mechanism of Elemental Sulfur Additive on Graphite Negative Electrode, Journal of The Electrochemical Society, 163 (2016) A223-A228.
    [88] W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries, Energy & Environmental Science, 2 (2009) 1102-1108.
    [89] S. Mai, M. Xu, Y. Wang, X. Liao, H. Lin, W. Li, Methylene Methanedisulfonate (MMDS) as a Novel SEI Forming Additive on Anode for Lithium Ion Batteries, Int. J. Electrochem. Sci, 9 (2014) 6294-6304.
    [90] K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio, Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries, Electrochimica Acta, 49 (2004) 4613-4622.
    [91] Y. Matsuo, K. Fumita, T. Fukutsuka, Y. Sugie, H. Koyama, K. Inoue, Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes, Journal of Power Sources, 119–121 (2003) 373-377.
    [92] X. Wu, X. Li, Z. Wang, H. Guo, L. Xiong, Investigation on the storage performance of LiMn2O4 at elevated temperature with the mixture of electrolyte stabilizer, Ionics, 18 (2012) 907-911.
    [93] H. Yamane, T. Inoue, M. Fujita, M. Sano, A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80°C, and the suppressing substances of its fading, Journal of Power Sources, 99 (2001) 60-65.
    [94] D.R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value, Electrochimica Acta, 184 (2015) 410-416.
    [95] J.C. Arrebola, A. Caballero, L. Hernán, J. Morales, A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material, Journal of Power Sources, 183 (2008) 310-315.
    [96] K. Kulig, A. Boba, A. Bielejewska, M. Gorska, B. Malawska, Application of cyclic sulfates in the synthesis of enantiomers of 1-[3-(4-aryl-piperazin-1-yl)-2-hydroxy-propyl]-pyrrolidin-2-one, Tetrahedron: Asymmetry, 20 (2009) 322-326.
    [97] S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries, Electrochimica Acta, 49 (2004) 1057-1061.
    [98] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael, The SEM and Its Modes of Operation, in: Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, Boston, MA, 2003, pp. 21-60.
    [99] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, in, Gaussian, Inc., Wallingford, CT, USA, 2009.
    [100] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, 120 (2007) 215-241.
    [101] B.J. Lynch, D.G. Truhlar, Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics:  The MCCM/3 Suite and SAC/3, The Journal of Physical Chemistry A, 107 (2003) 3898-3906.
    [102] E.G. Leggesse, J.-C. Jiang, Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries, The Journal of Physical Chemistry A, 116 (2012) 11025-11033.
    [103] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, The Journal of Physical Chemistry B, 113 (2009) 6378-6396.
    [104] D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries, Journal of Power Sources, 165 (2007) 491-499.
    [105] B.-J. Hwang, C.-Y. Wang, M.-Y. Cheng, R. Santhanam, Structure, Morphology, and Electrochemical Investigation of LiMn2O4 Thin Film Cathodes Deposited by Radio Frequency Sputtering for Lithium Microbatteries, The Journal of Physical Chemistry C, 113 (2009) 11373-11380.
    [106] W. Li, C. Campion, B.L. Lucht, B. Ravdel, J. DiCarlo, K.M. Abraham, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition, Journal of The Electrochemical Society, 152 (2005) A1361-A1365.
    [107] G. Xu, Z. Liu, C. Zhang, G. Cui, L. Chen, Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, Journal of Materials Chemistry A, 3 (2015) 4092-4123.
    [108] K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chemical Reviews, 114 (2014) 11503-11618.
    [109] C.L. Campion, W. Li, B.L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A2327-A2334.
    [110] T. Kawamura, S. Okada, J.-i. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, Journal of Power Sources, 156 (2006) 547-554.
    [111] B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H.A. Gasteiger, A. Garsuch, B.L. Lucht, Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation, The Journal of Physical Chemistry C, 119 (2015) 11337-11348.
    [112] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate, Journal of The Electrochemical Society, 149 (2002) A1079-A1082.
    [113] D.H.C. Wong, J.L. Thelen, Y. Fu, D. Devaux, A.A. Pandya, V.S. Battaglia, N.P. Balsara, J.M. DeSimone, Nonflammable perfluoropolyether-based electrolytes for lithium batteries, Proceedings of the National Academy of Sciences, 111 (2014) 3327-3331.
    [114] H.F. Xiang, Q.Y. Jin, C.H. Chen, X.W. Ge, S. Guo, J.H. Sun, Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries, Journal of Power Sources, 174 (2007) 335-341.
    [115] Y. Li, R. Zhang, J. Liu, C. Yang, Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery, Journal of Power Sources, 189 (2009) 685-688.
    [116] X.-w. Wu, H.-j. Guo, X.-h. Li, Z.-x. Wang, Effect of heptamethyldisilazane on the electrochemical performance of LiMn2O4/Li, Ionics, 19 (2013) 429-435.
    [117] Z. Zhong, X.U. Xuan, Z.U.O. Xiao-Xi, L.I. Wei-Shan, Stabilizing Effect of Amine on SmallMolecules in Electrolyte of LithiumBatteries, Acta Physico-Chimica Sinica, 23 (2007) 526-530.
    [118] X. Wu, X. Li, Z. Wang, H. Guo, P. Yue, Y. Zhang, Improvement on the storage performance of LiMn2O4 with the mixed additives of ethanolamine and heptamethyldisilazane, Applied Surface Science, 268 (2013) 349-354.
    [119] P. Voelker, Trace Degradation Analysis of Lithium-Ion Battery Components, (2014).
    [120] C.-S. Cheng, F.-M. Wang, J. Rick, Aqueous Additive for Lithium Ion Batteries: Promotes Novel Solid Electrolyte Interface (SEI) Layer with Overall Cost Reduction, Int. J. Electrochem. Sci, 7 (2012) 8676-8687.
    [121] S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochemistry Communications, 14 (2012) 47-50.
    [122] S. Wang, J. Wang, H. Luo, X. Zhao, L. Zhang, A Novel Aminoalkylsilane Compound with Oligo(ethylene oxide) Units as Effective Additive for Improving Cyclability of Lithium-ion Batteries, Journal of Materials Science & Technology, 29 (2013) 943-947.
    [123] J.-G. Han, S.J. Lee, J. Lee, J.-S. Kim, K.T. Lee, N.-S. Choi, Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 7 (2015) 8319-8329.
    [124] J. Chen, H. Zhang, M. Wang, J. Liu, C. Li, P. Zhang, Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive, Journal of Power Sources, 303 (2016) 41-48.
    [125] L. Niedzicki, G.Z. Żukowska, M. Bukowska, P. Szczeciński, S. Grugeon, S. Laruelle, M. Armand, S. Panero, B. Scrosati, M. Marcinek, W. Wieczorek, New type of imidazole based salts designed specifically for lithium ion batteries, Electrochimica Acta, 55 (2010) 1450-1454.
    [126] L. Niedzicki, M. Kasprzyk, K. Kuziak, G.Z. Żukowska, M. Marcinek, W. Wieczorek, M. Armand, Liquid electrolytes based on new lithium conductive imidazole salts, Journal of Power Sources, 196 (2011) 1386-1391.
    [127] T. Trzeciak, L. Niedzicki, G. Groszek, P. Wieczorek, M. Marcinek, W. Wieczorek, New trivalent imidazole-derived salt for lithium-ion cell electrolyte, Journal of Power Sources, 252 (2014) 229-234.
    [128] A.V. Plakhotnyk, L. Ernst, R. Schmutzler, Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O, Journal of Fluorine Chemistry, 126 (2005) 27-31.
    [129] Y.-K. Choi, K.-i. Chung, W.-S. Kim, Y.-E. Sung, S.-M. Park, Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries, Journal of Power Sources, 104 (2002) 132-139.
    [130] X. Sun, H.S. Lee, X.-Q. Yang, J. McBreen, The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 6 (2003) A43-A46.
    [131] S. Zhang, P. Shi, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochimica Acta, 49 (2004) 1475-1482.
    [132] D.I. Iermakova, R. Dugas, M.R. Palacín, A. Ponrouch, On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes, Journal of The Electrochemical Society, 162 (2015) A7060-A7066.
    [133] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources, 89 (2000) 206-218.
    [134] Z.D. Li, Y.C. Zhang, H.F. Xiang, X.H. Ma, Q.F. Yuan, Q.S. Wang, C.H. Chen, Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode, Journal of Power Sources, 240 (2013) 471-475.
    [135] H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edström, How dynamic is the SEI?, Journal of Power Sources, 174 (2007) 970-975.
    [136] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li‐ion batteries: AFM and XPS study, Surface and Interface Analysis, 37 (2005) 773-781.
    [137] M. Xu, L. Zhou, L. Xing, W. Li, B.L. Lucht, Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries, Electrochimica Acta, 55 (2010) 6743-6748.
    [138] L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, 156 (2009) A103-A113.
    [139] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, Journal of Power Sources, 244 (2013) 318-327.
    [140] S. Leroy, F. Blanchard, R. Dedryvère, H. Martinez, B. Carré, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study, Surface and Interface Analysis, 37 (2005) 773-781.
    [141] J. Clayden, N. Greeves, S.G. Warren, Organic chemistry, Oxford University Press, Oxford; New YorK, 2012.
    [142] P.Y. Bruice, Organic chemistry, 2014.
    [143] R. Ghosh, D. Biplab, Review on: Synthesis, chemistry and therapeutic approaches of imidazole derivatives, ChemInform, 45 (2014).
    [144] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, Journal of Materials Chemistry, 21 (2011) 9938-9954.
    [145] G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects, Energy & Environmental Science, 7 (2014) 1307-1338.
    [146] M.N. Obrovac, V.L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114 (2014) 11444-11502.
    [147] H.-p. Lin, D. Chua, M. Salomon, H.-C. Shiao, M. Hendrickson, E. Plichta, S. Slane, Low-Temperature Behavior of Li-Ion Cells, Electrochemical and Solid-State Letters, 4 (2001) A71-A73.
    [148] C.K. Huang, J.S. Sakamoto, J. Wolfenstine, S. Surampudi, The Limits of Low‐Temperature Performance of Li‐Ion Cells, Journal of The Electrochemical Society, 147 (2000) 2893-2896.
    [149] C. Wang, A.J. Appleby, F.E. Little, Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement, Journal of The Electrochemical Society, 149 (2002) A754-A760.
    [150] S.S. Zhang, K. Xu, T.R. Jow, A new approach toward improved low temperature performance of Li-ion battery, Electrochemistry Communications, 4 (2002) 928-932.
    [151] G. Zhu, K. Wen, W. Lv, X. Zhou, Y. Liang, F. Yang, Z. Chen, M. Zou, J. Li, Y. Zhang, W. He, Materials insights into low-temperature performances of lithium-ion batteries, Journal of Power Sources, 300 (2015) 29-40.
    [152] M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material, Journal of The Electrochemical Society, 147 (2000) 1245-1250.
    [153] C. Wang, A.J. Appleby, F.E. Little, Irreversible capacities of graphite anode for lithium-ion batteries, Journal of Electroanalytical Chemistry, 519 (2002) 9-17.
    [154] M. Smart, B. Ratnakumar, L. Whitcanack, K. Chin, S. Surampudi, H. Croft, D. Tice, R. Staniewicz, Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes, Journal of power sources, 119 (2003) 349-358.
    [155] S. Li, W. Zhao, Z. Zhou, X. Cui, Z. Shang, H. Liu, D. Zhang, Studies on Electrochemical Performances of Novel Electrolytes for Wide-Temperature-Range Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 6 (2014) 4920-4926.
    [156] E.J. Plichta, W.K. Behl, A low-temperature electrolyte for lithium and lithium-ion batteries, Journal of Power Sources, 88 (2000) 192-196.
    [157] G.H. Wrodnigg, J.O. Besenhard, M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes, Journal of The Electrochemical Society, 146 (1999) 470-472.
    [158] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries, Journal of The Electrochemical Society, 162 (2015) A7008-A7014.
    [159] N.-S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S.-S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, Journal of Power Sources, 161 (2006) 1254-1259.
    [160] Y. Hu, W. Kong, H. Li, X. Huang, L. Chen, Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries, Electrochemistry Communications, 6 (2004) 126-131.
    [161] H. Xiang, D. Mei, P. Yan, P. Bhattacharya, S.D. Burton, A. von Wald Cresce, R. Cao, M.H. Engelhard, M.E. Bowden, Z. Zhu, B.J. Polzin, C.-M. Wang, K. Xu, J.-G. Zhang, W. Xu, The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes, ACS Applied Materials & Interfaces, 7 (2015) 20687-20695.
    [162] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, Journal of Power Sources, 81–82 (1999) 20-26.
    [163] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery, Electrochimica Acta, 136 (2014) 274-285.
    [164] K. Edström, M. Herstedt, D.P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, 153 (2006) 380-384.
    [165] A.M. Andersson, K. Edström, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite, Journal of The Electrochemical Society, 148 (2001) A1100-A1109.
    [166] R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J.M. Tarascon, D. Gonbeau, Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study, The Journal of Physical Chemistry B, 109 (2005) 15868-15875.
    [167] S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, J.-M. Tarascon, Identification of Li-Based Electrolyte Degradation Products Through DEI and ESI High-Resolution Mass Spectrometry, Journal of The Electrochemical Society, 151 (2004) A1202-A1209.
    [168] H.L. Poh, P. Šimek, Z. Sofer, M. Pumera, Halogenation of Graphene with Chlorine, Bromine, or Iodine by Exfoliation in a Halogen Atmosphere, Chemistry – A European Journal, 19 (2013) 2655-2662.
    [169] F.-M. Wang, H.-M. Cheng, H.-C. Wu, S.-Y. Chu, C.-S. Cheng, C.-R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta, 54 (2009) 3344-3351.
    [170] M. Herstedt, A.M. Andersson, H. Rensmo, H. Siegbahn, K. Edström, Characterisation of the SEI formed on natural graphite in PC-based electrolytes, Electrochimica Acta, 49 (2004) 4939-4947.
    [171] G.G. Eshetu, T. Diemant, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes, ACS Applied Materials & Interfaces, 8 (2016) 16087-16100.
    [172] C. Shen, S. Wang, Y. Jin, W.-Q. Han, In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes, ACS Applied Materials & Interfaces, 7 (2015) 25441-25447.
    [173] X.-B. Cheng, H.-J. Peng, J.-Q. Huang, R. Zhang, C.-Z. Zhao, Q. Zhang, Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium–Sulfur Batteries, ACS Nano, 9 (2015) 6373-6382.
    [174] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries, Journal of the American Chemical Society, 136 (2014) 5039-5046.
    [175] F. Buchner, M. Bozorgchenani, B. Uhl, H. Farkhondeh, J. Bansmann, R.J. Behm, Reactive Interaction of (Sub-)monolayers and Multilayers of the Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoro-methylsulfonyl)imide with Coadsorbed Lithium on Cu(111), The Journal of Physical Chemistry C, 119 (2015) 16649-16659.
    [176] H. Ota, T. Akai, H. Namita, S. Yamaguchi, M. Nomura, XAFS and TOF–SIMS analysis of SEI layers on electrodes, Journal of Power Sources, 119–121 (2003) 567-571.
    [177] H. Geng, S. Li, Y. Pan, Y. Yang, J. Zheng, H. Gu, Porous Fe3O4 hollow spheres with chlorine-doped-carbon coating as superior anode materials for lithium ion batteries, RSC Advances, 5 (2015) 52993-52997.
    [178] X. Zhang, T. Schiros, D. Nordlund, Y.C. Shin, J. Kong, M. Dresselhaus, T. Palacios, X-Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects, Advanced Functional Materials, 25 (2015) 4163-4169.
    [179] J.C. Burns, N.N. Sinha, G. Jain, H. Ye, C.M. VanElzen, E. Scott, A. Xiao, W.M. Lamanna, J.R. Dahn, The impact of intentionally addedwater to the electrolyte of li-ion cells I. Cells with graphite negative electrodes, Journal of the Electrochemical Society, 160 (2013) A2281-A2287.
    [180] R. Younesi, G.M. Veith, P. Johansson, K. Edstrom, T. Vegge, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy & Environmental Science, 8 (2015) 1905-1922.
    [181] Y. Zhao, Y. Ding, Y. Li, L. Peng, H.R. Byon, J.B. Goodenough, G. Yu, A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage, Chemical Society Reviews, 44 (2015) 7968-7996.
    [182] A.A. Bredikhin, S.N. Lazarev, A.V. Pashagin, Z.A. Bredikhina, Cyclic (4S)-chloromethyl sulfite and sulfate derivatives of (S)-glycidol as valuable synthetic equivalents of scalemic epichlorohydrin, Mendeleev Communications, 9 (1999) 236-237.

    無法下載圖示 全文公開日期 2021/10/06 (校內網路)
    全文公開日期 2036/10/06 (校外網路)
    全文公開日期 2036/10/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE