簡易檢索 / 詳目顯示

研究生: 傅彥鈞
Yen-Chun Fu
論文名稱: 雙環氮有機金屬錯合物應用於質子交換膜燃料電池
Binary metal-containing macrocyclic complexes applied in PEM fuel cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林昇佃
Shawn-D Lin
蘇威年
none
陳貴賢
none
林麗瓊
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 113
中文關鍵詞: 非白金觸媒氧還原
外文關鍵詞: non-platinum, ORR
相關次數: 點閱:223下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著目前全球對於能源的需求日益提升,在取得能源的同時對於環境之威脅亦相對地提升,有鑑於此,目前世界各國正極力投入新綠色能源開發的相關研究,其中一種能源就是燃料電池。而燃料電池長久以來被使用大多的白金電極導致價格昂貴。在地球上的資源很稀少,因此開發非白金觸媒也成為近年來的研究趨勢。
而本研究嘗試混合兩種不同金屬(鈷及鐵)前驅物的過渡金屬環大錯合物為非白金觸媒,取代原有的白金觸媒,並且應用於質子交換膜燃料電池中。發現溫度處理過後的觸媒具有極佳的氧還原能力,其電子轉移數可達 3.97,相當接近理想電子轉移數。而在電池總輸出功率的部分可達到 423 mW/cm2,可見此觸媒的優勢。在進行100小時的觸媒穩定度測試後發現,此觸媒穩定度相當良好,開路電壓也可達0.93 V。在結構分析上,發現此混合環氮觸媒在達到最佳熱處理條件時,其外圍會有一層類似石墨層的洋蔥層狀結構,此結構在進行氧還原反應時,可幫助電子傳遞,使觸媒更加導電,氧氣還原活性提升。而由同步輻射光源得到的吸收光譜分析可以知道觸媒在經過熱處理後的價數變化,其中鐵的價數沒有改變,都維持+3價,而鈷的價數會有一部分變為+2價,一部分維持原來的+3價。


With the growth of global energy demand and human impacts on the environment, there is an ever increasing need for each country to come up with a realistic plan for a green energy sources. One of the potential energy sources is fuel cell. Unfortunately, one of the limitations of fuel cell is the use of an expensive catalyst in platinum. Moreover, the resources of platinum in the world are getting scarce. Based on this limitation, developing of a non-platinum based catalyst has become an attractive topic for research in the recent years.
This study attempts to mix two kinds of transition metal (Co and Fe) coming from their respective macrocyclic complexes as the catalyst to replace the platinum. As our model system, we applied the catalyst into a typical proton exchange membrane fuel cell. The mixed catalyst demonstrates good oxygen reduction ability after pyrolysis having an electron transfer number of 3.97, which is very close to the ideal electron transfer number, 4.00. In PEMFC test, the maximum power density attained using the mixed catalyst is 423 mW/cm2. The mixed catalyst also shows good stability after 100 hours with open circuit potential (OCP) maintaining at 0.93 V. From our structure analysis, it can be found that an onion-like graphite shell surrounds the active site and will help electron transfer during oxygen reduction reaction. From x-ray absorption spectroscopy (XAS) data, we found that a change of oxidation state occurs after pyrolysis. The oxidation state of iron (+3) in the mixed catalyst does not change while part of the cobalt change from +3 to +2 after pyrolysis.

中文摘要 i Abstract ii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1-1全球能源及環境問題 1 1-2新能源之開發與研究 2 1-3燃料電池的發展史 3 1-4燃料電池的種類與特點 6 1-4-1 燃料電池的種類 6 1-4-2 燃料電池的發電比較 9 1-4-3 燃料電池的優點 9 1-4-4 質子交換膜燃料電池 10 1-5質子交換膜燃料電池之構造 11 1-6陰極觸媒材料 14 1-7 研究動機與目的 16 第二章 原理與文獻探討 19 2-1 電化學原理 19 2-1-1 氧化還原反應 19 2-1-2 氧氣還原途徑 20 2-1-3 氧氣還原機制 23 2-1-4 氧還原反應之電化學催化 27 2-2 文獻探討 28 2-2-1 陰極觸媒與非貴重金屬之發展 28 2-2-2 過渡金屬環大錯合物 31 2-2-3 近年非貴重金屬之相關文獻回顧 32 第三章 實驗步驟與研究方法 38 3-1 實驗流程 38 3-1-2 觸媒製作 39 3-1-3 工作電極樣本製作 39 3-2實驗藥品及材料 41 3-3 實驗儀器 42 3-3-1 旋轉盤環電極(RRDE) 42 3-3-2 恆電位分析儀(Potentiostat) 43 3-3-3 同步輻射光源 45 3-3-4 X光吸收光譜 46 3-3-5 拉曼振動光譜(Raman spectrum) 51 3-3-6 傅立葉轉換紅外線光譜(Fourier transform infrared spectroscopy) 53 3-3-7穿透式電子顯微鏡 56 3-3-8質子交換膜燃料電池分析儀 58 第四章 結果與討論 59 4-1 Fe2Co1-NX/C做為觸媒之分析 61 4-1-1 Fe2Co1-NX/C觸媒之特性 61 4-1-2 Fe2Co1-NX/C之拉曼光譜分析 70 4-1-3 Fe2Co1-NX/C之傅立葉紅外線光譜圖分析 74 4-2-4 Fe2Co1-NX/C之X光吸收光譜分析 77 4-2-5 Fe2Co1-NX/C之場發射穿透式電子顯微鏡照片分析 83 4-3 PEMFC全電池測試 88 4-4 Fe2Co1-NX/C觸媒之穩定性測試 90 4-5 Fe2Co1-NX/C觸媒之之應機制探討 91 第五章 結論 93 參考文獻 95

[1] 黃鎮江. 燃料電池. 全華圖書公司. 2003:3-75頁.
[2] Wolf vielstich AL, Hubert A. Gasteiger. Handbook of Fuel cell. New York: John Wiley & Sons. 2003;vol. 1, no. 4:pp. 306.
[3] Chang S-T, Wang C-H, Du H-Y, Hsu H-C, Kang C-M, Chen C-C, et al. Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy & Environmental Science. 2012;5(1):5305-14.
[4] Huang H-C, Shown I, Chang S-T, Hsu H-C, Du H-Y, Kuo M-C, et al. Pyrolyzed Cobalt Corrole as a Potential Non-Precious Catalyst for Fuel Cells. Advanced Functional Materials. DOI: 10.1002/adfm.
[5] Zhang H-J, Kong H-C, Yuan X, Jiang Q-Z, Yang J, Ma Z-F. Influence of metal precursors on the catalytic activity and structure of non-precious metal electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy. (0).
[6] Ohms D, Herzog S, Franke R, Neumann V, Wiesener K, Gamburcev S, et al. Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile. Journal of Power Sources. 1992;38(3):327-34.
[7] Jaouen F, Marcotte S, Dodelet J-P, Lindbergh G. Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports. The Journal of Physical Chemistry B. 2003;107(6):1376-86.
[8] Kinoshita K. Electrochemical Oxygen Technology. New York: John Wiley & Sons. 1992:pp. 37.
[9] Perez J, Gonzalez ER, Ticianelli EA. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochimica Acta. 1998;44(8–9):1329-39.
[10] Xu JB, Zhao TS, Li YS, Yang WW. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. International Journal of Hydrogen Energy. 2010;35(18):9693-700.
[11] Rajalakshmi N, Lakshmi N, Dhathathreyan KS. Nano titanium oxide catalyst support for proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2008;33(24):7521-6.
[12] Genies L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochimica Acta. 1998;44(8–9):1317-27.
[13] P.Hoare J. The Electrochemistry of Oxygen. New York: John Wiley & Sons. 1968:pp. 26-91.
[14] Bagotskii VS, Tarasevich, M.R. and Filinovskii, V.Y. Calculation of the Kinetic Parameters of Conjugated Reactions of Oxygen and Hydrogen Peroxide. Elektrokhimiya,. 1969(5):1218.
[15] Genshaw MA, Damjanovic A, Bockris JOM. Role of hydrogen peroxide in oxygen reduction at rhodium electrodes. The Journal of Physical Chemistry. 1967;71(12):3722-31.
[16] Prakash J, Joachin H. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochimica Acta. 2000;45(14):2289-96.
[17] Wroblowa HS, Qaderi SB. ChemInform Abstract: The Mechanism of Oxygen Reduction on Zinc. ChemInform. 1991;22(9).
[18] Hsueh KL, Chin DT, Srinivasan S. Electrode kinetics of oxygen reduction: A theoretical and experimental analysis of the rotating ring-disc electrode method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1983;153(1–2):79-95.
[19] Conway BE. Comprehensive Treatise of Electrochemistry. New York: Kluwer Academic Pub. 1983:pp. 26-91.
[20] http://www.kitco.com.
[21] Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science. 2011;4(4):1238-54.
[22] Fuller TF, Luczak FJ, Wheeler DJ. Electrocatalyst utilization in phosphoric acid fuel cells.Journal of the Electrochemical Society; Journal Volume: 142; Journal Issue: 6; Other Information: PBD: Jun 1995. 1995:Medium: X; Size: pp. 1752-7.
[23] Toda T, Igarashi, Hiroshi, Watanabe M. Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. Journal of the Electrochemical Society; Journal Volume: 145; Journal Issue: 12; Other Information: PBD: Dec 1998. 1998:Medium: X; Size: pp. 4185-8.
[24] Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P. Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells. J Electrochem Soc. 1994;141(10):2659-68.
[25] Jović VD, Jović BM, Despić AR. Identification of phases in Ag + Pd alloys electrodeposited by the electrochemical ALSV technique. Journal of Electroanalytical Chemistry. 1993;357(1–2):357-72.
[26] Shim J, Yoo D-Y, Lee J-S. Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta. 2000;45(12):1943-51.
[27] Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. Journal of Electroanalytical Chemistry. 1999;460(1–2):258-62.
[28] Subramanian NP, Kumaraguru SP, Colon-Mercado H, Kim H, Popov BN, Black T, et al. Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes. Journal of Power Sources. 2006;157(1):56-63.
[29] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science. 2011;4(9):3167-92.
[30] Jasinski R. A New Fuel Cell Cathode Catalyst. Nature. 1964;201(4925):1212-3.
[31] van Veen JAR, van Baar JF, Kroese KJ. Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1981;77(11):2827-43.
[32] Hamnett A. Handbook of Fuel Cells-Fundamentals, Technology, and Applications. W Vieltich, H A Gasteiger A Lamm, John Wiley & SonsLtd. 2003;vol. 2, part 4,Chap. 18.
[33] Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, et al. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta. 2008;53(15):4937-51.
[34] Vasudevan P, Santosh S, Mann N, Tyagi S. Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Metal Chemistry. 1990;15(2):81-90.
[35] Zagal JH. ChemInform Abstract: Metallophthalocyanines as Catalysts in Electrochemical Reactions. ChemInform. 1993;24(12).
[36] Bron M, Fiechter S, Bogdanoff P, Tributsch H. Thermogravimetry/Mass Spectrometry Investigations on the Formation of Oxygen Reduction Catalysts for PEM Fuel Cells on the Basis of Heat-Treated Iron Phenanthroline Complexes. Fuel Cells. 2002;2(3-4):137-42.
[37] Lefevre M, Proietti E, Jaouen F, Dodelet J-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science. 2009;324(5923):71-4.
[38] Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun. 2011;2:416.
[39] Kauffman DR, Star A. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst. 2010;135(11):2790-7.
[40] Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958;80(6):1339-.
[41] Wang X, You H, Liu F, Li M, Wan L, Li S, et al. Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition. 2009;15(1-3):53-6.
[42] Qu L, Liu Y, Baek J-B, Dai L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano. 2010;4(3):1321-6.
[43] Zagal JH. Coord Chem Rev. 1992;119,:89–136.
[44] Jiang RZ, Chu D. Remarkably active catalysts for the electroreduction of O-2 to H2O for use in an acidic electrolyte containing concentrated methanol. J Electrochem Soc. 2000;147(12):4605-9.
[45] Chu D, Jiang R. Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics. 2002;148(3–4):591-9.
[46] P. Zelenay YY, A. Wieckowski, D. Myers, K. More,, P. Atanassov PAaRA. Advanced CathodeCatalysts. 2008.
[47] (國家同步輻射研究中心)http://www.srrc.gov.tw/chinese/lightsource.aspx.
[48] (xafs.org)http://cars.uchicago.edu/xafs/.
[49] (國家同步輻射研究中心)http://www.nsrrc.org.tw/lifensrrc/x-ray_absorption_spectroscopy.htm.
[50] FENG ZC. Micro-raman scattering and microphotoluminescence of GaN thin films grown on sapphire by metal-organic chemical vapor deposition. Bellingham, WA, ETATS-UNIS: Society of Photo-Optical Instrumentation Engineers; 2002.
[51] Alessio P, Rodriguez-Mendez ML, De Saja Saez JA, Constantino CJL. Iron phthalocyanine in non-aqueous medium forming layer-by-layer films: growth mechanism, molecular architecture and applications. Physical Chemistry Chemical Physics. 2010;12(16):3972-83.
[52] Wu G, More KL, Johnston CM, Zelenay P. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science. 2011;332(6028):443-7.
[53] Li S, Zhang L, Kim J, Pan M, Shi Z, Zhang J. Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta. 2010;55(24):7346-53.

無法下載圖示 全文公開日期 2017/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE