簡易檢索 / 詳目顯示

研究生: 陳宜松
Yi-Song Chen
論文名稱: 光譜晶片之自動光學瑕疵檢測系統研究與開發
Research and Development of an Automated Optical Inspection System for Defect Detection of SpectroChip
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 自動光學檢測機器視覺瑕疵檢測自動對焦
外文關鍵詞: Automated Optical Inspection, Defect Detection, Machine Vision, Autofocusing
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜晶片為應用MEMS(微機電系統製程) 技術製造,其搭載影像感測器即可成為一台微型光譜儀,與市售光譜儀相比,擁有輕量化、可攜帶性、成本低等優勢。光譜晶片上涵蓋狹縫(Slit)、光柵(Grating)、聚焦鏡(Focusing Mirror) 等超微型光學元件,生產過程繁瑣且複雜,這類應用半導體製程技術生產的元件,在製造的任何一個環節,都有可能產生刮傷、破損、落塵於晶圓上,大大影響良率及品質,因此瑕疵的檢測在半導體廠中是相當重要的環節。
    這些微小的瑕疵,過往是以人工方式,透過高倍率的電子顯微鏡進行品質的檢測,要在晶圓上定位到目標微結構位置,並找尋微奈米等級的瑕疵,透過這種人工方式有耗時、人力疲勞、易出錯、效率低等缺點。因此本文針對生產自動化目標為方向,研究透過現有光學影像儀為基礎,將瑕疵檢測影像演算法加入其中,改善過去須手動定位、對焦、取像、量測等缺點,並能自動找尋晶粒瑕疵,進一步計算瑕疵位置及大小。
    研究中使用邊緣偵測和最小二乘方等方法進行四吋晶圓定位,透過影像清晰度評價函數進行自動對焦,並到特定目標點進行取像,接著應用不同影像處理技術將瑕疵找出並標示其位置、尺寸,最後自動產生檢測報表。將以往人工檢測平均三個鐘頭時長減少至二十分鐘完成,達到自動化瑕疵檢測的目標。


    SpectroChip is manufactured by MEMS (Micro Electro Mechanical System Process) technology, and it can become a miniature spectrometer with an image sensor. Compared
    with commercially available spectrometers, it has the advantages of light weight, portability and low cost. SpectroChip covers ultra-micro optical elements such as slit, grating, focusing mirror, etc., and the production process is tedious and complicated. Scratch, damage and particle which greatly affect the yield and quality may happen in any part in the process of semiconductor. Therefore, defect detection plays an important role in the semiconductor fabrication.
    In the past, the quality inspection of these tiny defects was carried out manually through a high-magnification electron microscope. It was necessary to locate the target microstructure on the wafer and find the micro-nano level defects. There are some disadvantages in the manual method, such as time-consuming, labor fatigue, error-prone and low efficiency.
    Therefore, to achieve the goal of production automation, this paper investigates how to add the defect detection image algorithm to the existing optical projector, which can improve the shortcomings of manual positioning, focusing, image taking and measurement in the past, and can automatically find the grain defect and further calculate their position and size.
    In this study, edge detection and least square method are used to locate the four-inch wafer, auto-focusing is performed by image definition evaluation function, and the image is taken at a specific target point. Then, different image processing techniques are used to find out the defects and mark their positions and sizes, and finally the inspection report is automatically generated. In the past, the average time of manual inspection was reduced from three hours to twenty minutes, and the goal of automatic defect detection was achieved.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI 縮寫列表 XII 第一章緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻探討 2 1.4 論文架構 4 第二章實驗系統架構 5 2.1 光譜晶片 5 2.1.1 光譜晶片簡介 5 2.1.2 光譜晶片設計製造 5 2.1.3 光譜晶片瑕疵種類 9 2.2 檢測硬體架構 10 2.2.1 機器視覺系統基本架構 11 2.2.2 光源系統 11 2.2.3 相機模組 15 2.2.4 鏡頭模組 17 2.2.5 機構配置圖 20 2.3 檢測軟體架構 22 2.3.1 動態連結函式庫 22 2.3.2 多執行緒架構 23 第三章檢測之方法與理論 24 3.1 自動對焦 24 3.1.1 成像公式 24 3.1.2 自動對焦原理 26 3.1.3 清晰度評價函數 27 3.1.4 對焦點搜尋演算法 32 3.2 影像處理 34 3.2.1 RGB 彩色影像轉換灰階 34 3.2.2 雜訊去除 35 3.2.3 二值化 36 3.2.4 邊緣偵測 39 3.2.5 最小二乘方 43 3.2.6 形態學 46 3.3 影像標記 48 3.3.1 連通區域標記 48 3.3.2 幾何矩計算連通像素個數及重心 52 3.4 二維座標系變換 53 3.5 結果比較與方法選用 54 3.5.1 清晰度評價函數 54 3.5.2 對焦點搜尋演算法 59 3.5.3 二值化 62 3.5.4 連通區域標記演算法 66 3.5.5 結論 67 第四章自動光學瑕疵檢測流程 68 4.1 定義檢測目標區 68 4.2 自動對焦流程 70 4.3 座標系統建立 71 4.4 檢測路徑規劃 76 4.5 移動距離計算 79 4.6 瑕疵檢測 80 4.7 結果輸出 84 4.8 結論 85 第五章實驗結果 87 5.1 座標系統建立 87 5.2 瑕疵檢測 94 5.3 檢測結果 100 第六章結論與未來展望 104 參考文獻 106

    [1] R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” Journal of Micromechanics and Microengineering, vol. 15, no. 7, pp. S145–S152, 2005.
    [2] S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “Microspectrometer with a concave grating fabricated in a MEMS technology,” Procedia Chemistry, vol. 1, no. 1, pp. 401–404, 2009.
    [3] A. Ravindran, D. Nirmal, P. Prajoon, and D. G. N. Rani, “Optical grating techniques for MEMS based spectrometer- a review,” IEEE Sensors Journal, vol. 21, no. 5, pp. 5645–5655, 2020.
    [4] H. Yan, X. Liao, C. Chen, and C. Li, “An integrated microwave detector based on mems technology for x-band application,” IEEE Electron Device Letters, vol. 39, no. 5, pp. 742–745, 2018.
    [5] E. N. Malamas, E. G. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image and Vision Computing, vol. 21, no. 2, pp. 171–188, 2003.
    [6] J. M. Tenenbaum, “Accommodation in computer vision,” Ph.D. dissertation, Stanford
    University, 1970.
    [7] R. A. Jarvis, “Focus optimisation criteria for computer image processing,” Microscope, vol. 24, no. 2, pp. 163–180, 1976.
    [8] J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles,
    “An automated microscope for cytologic research a preliminary evaluation,” Journal
    of Histochemistry and Cytochemistry, vol. 24, no. 1, pp. 100–111, 1976.
    [9] F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry, vol. 6, no. 2, pp. 81–91, 1985.
    [10] M. Subbarao, T. S. Choi, and A. Nikzad, “Focusing techniques,” Optical Engineering, vol. 32, no. 11, pp. 2824–2836, 1993.
    [11] S. K. Nayar and Y. Nakagawa, “Shape from focus,” IEEE Transactions on Pattern
    Analysis and Machine Intelligence, vol. 16, no. 8, pp. 824–831, 1994.
    [12] G. S. Beveridge and R. S. Schechter, Optimization: theory and practice. McGraw-Hill, New York, 1970.
    [13] J. Baina and J. Dublet, “Automatic focus and iris control for video cameras,” in Fifth International Conference on Image Processing and Its Applications, 1995, pp. 232–235.
    [14] K. S. Choi, J. S. Lee, and S. J. Ko, “New autofocusing technique using the frequency selective weighted median filter for video cameras,” IEEE Transactions on Consumer Electronics, vol. 45, no. 3, pp. 820–827, 1999.
    [15] N. K. Chern, P. A. Neow, and M. H. Ang, “Practical issues in pixel-based autofocusing for machine vision,” in IEEE International Conference on Robotics and Automation, 2001, pp. 2791–2796.
    [16] J. M. Zhang, R. M. Lin, and M. J. Wang, “The development of an automatic post-sawing inspection system using computer vision techniques,” Computers in Industry, vol. 40, no. 1, pp. 51–60, 1999.
    [17] W. Doyle, “Operations useful for similarity-invariant pattern recognition,” Journal of the ACM, vol. 9, no. 2, p. 259–267, 1962.
    [18] J. M. Prewitt and M. L. Mendelsohn, “The analysis of cell images,” Annals of the New York Academy of Sciences, vol. 128, no. 3, p. 1035–1053, 1966.
    [19] G. W. Zack, W. E. Rogers, and S. A. Latt, “Automatic measurement of sister chromatid exchange frequency.” Journal of Histochemistry & Cytochemistry, vol. 25, no. 7, pp. 741–753, 1977.
    [20] T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 8, no. 8, pp. 630–632, 1978.
    [21] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
    [22] W. H. Tsai, “Moment-preserving thresolding: A new approach,” Computer Vision,
    Graphics, and Image Processing, vol. 29, no. 3, p. 377–393, 1985.
    [23] 邱韋懷, “晶片型光譜儀波長校正程序開發及尿蛋白濃度測量之應用,” 碩士論文, 國立臺灣科技大學自動化及控制研究所, 2018.
    [24] 歐陽衡, “機器視覺用在封裝IC 外觀瑕疵檢測之研究,” 碩士論文, 國立成功大學工程科學系專班, 2007.
    [25] 張元碩, “晶粒表面缺陷自動視覺檢測系統之設計與開發,” 碩士論文, 國立交通大學工業工程與管理系所, 2009.
    [26] 余立安, “基於機器視覺與次像素邊緣偵測於LED 探針之自動化檢測系統,” 碩士論文, 國立臺灣師範大學電機工程學系, 2017.
    [27] 劉依帆, “高倍率生醫玻片影像掃描系統之研究,” 碩士論文, 國立臺灣科技大學機械工程系, 2015.
    [28] 黃嘉慶, “高速被動式自動對焦技術,” 碩士論文, 元智大學機械工程學系, 2002.
    [29] 王文慶, “利用自動對焦改善子孔徑相位拼接演算法之研究,” 碩士論文, 國立中央大學照明與顯示科技研究所, 2018.
    [30] 沈明興, “自動對焦麥克森白光干涉儀之系統研製,” 碩士論文, 國立成功大學機械工程學系, 2007.
    [31] 莊漢鈞, “離散差分預測模型用於數位相機自動對焦搜尋演算法之設計與應用,” 碩士論文, 國立臺灣師範大學機電科技研究所, 2005.
    [32] Z. Gao, W. Jiang, and K. Zhu, “Auto-focusing algorithm based on Roberts gradient,” Infrared and Laser Engineering, vol. 35, no. 1, p. 117, 2006.
    [33] K. Y. Chen, C. H. Chen, and S. C. Yang, “Development of a stereovision-based tracking system by applying a hybrid autofocus technology,” International Journal of Optomechatronics, vol. 9, no. 1, pp. 89–109, 2015.
    [34] L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston Jr, “Comparison of autofocus methods for automated microscopy,” Cytometry: The Journal of the International Society for Analytical Cytology, vol. 12, no. 3, pp. 195–206, 1991.
    [35] D. Vollath, “Automatic focusing by correlative methods,” Journal of Microscopy, vol. 147, no. 3, pp. 279–288, 1987.
    [36] C. A. Glasbey, “An analysis of histogram-based thresholding algorithms,” CVGIP:
    Graphical Models and Image Processing, vol. 55, no. 6, pp. 532–537, 1993.
    [37] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.
    [38] L. Ding and A. Goshtasby, “On the canny edge detector,” Pattern recognition, vol. 34, no. 3, pp. 721–725, 2001.
    [39] W. Rong, Z. Li, W. Zhang, and L. Sun, “An improved canny edge detection algorithm,” in 2014 IEEE international conference on mechatronics and automation. IEEE, 2014, pp. 577–582.
    [40] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532–550, 1987.
    [41] 陳園鑫, “連通元件標記方法應用於中文辨識字集資料擴增,” 碩士論文, 國立中興大學人工智慧與資料科學碩士在職學位學程, 2021.
    [42] 吳承懋, “滑動累進算法計算圖像矩之研究,” 碩士論文, 國立臺北大學通訊工程研究所, 2018.

    無法下載圖示 全文公開日期 2024/08/11 (校內網路)
    全文公開日期 2024/08/11 (校外網路)
    全文公開日期 2024/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE