簡易檢索 / 詳目顯示

研究生: 高偉哲
Wei-Che Kao
論文名稱: LCD面板間隙物自動化檢測系統
Automatic Detection System for LCD Panel Spacer
指導教授: 許孟超
Mon-Chau Shie
口試委員: 阮聖彰
Shanq-Jang Ruan
吳晉賢
Chin-Hsien Wu
林昌鴻
Chang-Hung Lin
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 54
中文關鍵詞: 自動對焦LCD面板檢測清晰度演算法影像處理
外文關鍵詞: Auto Focus, LCD Panel Detect, Sharpness Algorithm, Image Processing
相關次數: 點閱:401下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液晶顯示器具有薄型化、輕量化、低耗電量、無輻射污染、且能與半導體製程技術相容等優點,使其在短短三十年間,產品上的應用更呈飛躍性的成長。在液晶顯示面板(LCD)的製造過程中,須於兩片玻璃基板之間的空隙注入液晶,而基板間的空隙則是利用噴灑間隙物(Spacer)來達成,間隙物之特性在於保持玻璃基板之間的液晶厚度均一性,其作用在於防止液晶厚度不均所產生顯示影像模糊之缺失,因此LCD面板的間隙均一性是由珠狀(Bead)間隙物的大小及其分佈位置來決定。一般使用噴灑式珠狀間隙物(Ball Spacer)製程,此噴灑過程可能造成珠狀材密度不均而影響模組平坦性,進而影響整體畫質表現。目前檢測間隙物分佈位置之方法是採取人工透過顯微鏡來目測間隙物數量(密度)及是否有重疊情形發生,本文將利用影像處理之技術,將檢測系統自動化,透過工業相機取得影像,並將影像經過一連串的檢測處理,最後將輸出檢測結果及間隙物數量(密度),此方法有效地提升了檢測效率及準確率。
    本論文結合了自動化對焦與LCD間隙物計數與檢測兩大部分,實現LCD面板間隙物自動化檢測系統。首先透過自動對焦取得間隙物分佈位置的清晰影像,並利用本文所提出之區域式值方圖等化 、二值化與連通物件法檢測LCD面板間隙物計數及是否有錯誤(重疊)情形發生,誤差率在1%以下。最後將結果透過wxWidget GUI and OLE輸出於螢幕與Excel中。


    After thirty years of liquid crystal display (LCD) development, the applications of LCDs have grown quickly and have wide application. LCD has the following features: thin, lightweight, low power, less EM radioactive, compatible with semiconductor processing technology. During the manufacturing process of liquid crystal display panel, manufacturers have to inject liquid crystal between the front and rear pieces of glass after injecting spacer which is used to maintain the cell gap (the distance) between the front and rear pieces of glass. It will cause the blurred image displayed on the LCD if the thickness between two glass plates is not equal. Usually the detection of spacer is manually to count the number of spacer and check the overlapped problem of spacers through a microscope. To solve this issue with automatic machine vision, an image processing technology is developed in this thesis.
    In our system, we capture images from an industrial microscope-capability camera, and then a detection processing algorithm is used to process the images to determine if the image is a focused one. Our method greatly improve the efficiency and accuracy. In our system, we integrate an auto-focus with the LCD panel spacer’s count and detection. There are three main steps:
    1) Capture clear images by using an auto-focus algorithm.
    2) Count the number of spacer and detect if they are overlapped or not by applying region histogram equalization, binarization, and connected component image processing algorithms. Experiment show that the error rate is under 1%.
    3)Use wxWidget GUI to display the result (the output from step 2) on the monitor. Moreover, we use OLE to save the result in an Excel file for further processing and archiving purpose.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目標 1 1.3 研究方法 2 1.4 論文架構 3 第二章 相關知識 4 2.1 自動對焦 4 2.1.1 焦距 5 2.2 被動式自動對焦理論 6 2.3 清晰度演算法 6 2.3.1 影像差異值法 6 2.3.2 影像梯度值法 7 2.4 對焦點搜尋法 9 2.4.1 全域搜尋法(Global Search) 9 2.4.2 費氏搜尋法(Fibonacci Search) 10 2.4.3 二元搜尋法(Binary Search) 10 2.5 基礎影像處理 11 2.5.1 色彩空間 11 2.5.2 直方圖等化(Histogram Equalization, HE) 14 2.5.3 二值化 15 2.5.4 形態學 17 2.5.5 連通物件法(Connected Component) 19 2.6 物件鏈結與嵌入(Object Linking and Embedding, OLE) 21 第三章 LCD面板檢測系統設計 23 3.1 系統架構 23 3.2 系統整體運作流程 24 3.2 自動對焦系統 24 3.3 LCD面板間隙物計數與檢測 27 3.3.1 直方圖等化 27 3.3.2 二值化 29 3.3.3 連通物件與間隙物數判別與計數 30 3.4 馬達控制板設計 30 3.4.1 運轉區域(slew range) 31 3.4.2 控制方法 32 3.4.3 馬達控制卡設計 32 3.5 程式之圖形化使用者介面設計 33 3.5.1 wxWidgets 33 第四章 實驗結果 34 4.1 實驗設備 34 4.2 實驗結果 38 4.2.1 清晰度計算結果 38 4.2.2 自動對焦 39 4.2.3 LCD面板間隙物計算結果 42 第五章 結論與未來展望 50 參考文獻 52

    [1] R. A. Jarvis, "Focus optimization criteria for computer image processing," Microscope, vol. 24, no. 2, pp. 163-180, 1976.
    [2] J. M. Tenenbaum, Accommodation in computer vision, Stanford University, USA, 1970.
    [3] E. P. Krotkov, Active Computer Vision by Cooperative Focus and Stereo, Springer-Verlag, New York, 1989.
    [4] F. R. Boddeke, L. J. Van Vliet, H. Netten, and I. T. Young, "Autofocusing in microscopy based on the OTF and sampling," Bioimaging, vol. 2, no. 4, pp. 193-203, Jan. 1994.
    [5] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Transactions on Systems, vol. 9, no. 1, pp. 62-66, Jan. 1979.
    [6] P. Hoad and J. Illingworth, "Automatic control of camera pan, zoom and focus for improving object recognition," Fifth IEE International Conference on Image Processing and its Applications, pp. 291-295, Jul. 1995.
    [7] F. Groen, I. T. Young, and G. Ligthart, "A comparison of different focus functions for use in autofocus algorithms," Cytometry, vol. 6, no. 2, pp. 81-91, 1985.
    [8] G. Nagy, "Twenty years of document image analysis in PAMI," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 38-62, 2000.
    [9] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, "Fast autofocus algorithm for automated microscopes," Optical Engineering, vol. 44, no. 6, pp. 063601, Jun. 2005.
    [10] J. Smart and K. Hock, Cross-Platform GUI Programming with wxWidgets, Prentice Hall, USA, 2005.
    [11] Y. Zhang, Y. Zhang and C. Wen, "A new focus measure method using moments," Image and Vision Compting, vol. 18, no. 12, pp. 959-965, Sep. 2000.
    [12] N. K. Chern, P. A. Neow and M.H. Ang, "Practical issues in pixel-based autofocusing for machine vision," Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2791-2796, May 2001.
    [13] G. Athalye, V. Dronamraju and J.M. Conrad, "A stepper motor and serial communication interface daughter board for educational use," Proceedings of IEEE SoutheastCon 2010, pp. 328-332, Mar. 2007.
    [14] H. L. Huy, P. Brunelle and G. Sybille, "Design and implementation of a versatile stepper motor model for simulink’s SimPowerSystems," Proceedings of IEEE International Symposium on Industrial Electronics, pp. 437-442, Jul. 2008.
    [15] N. K. Chern, N., P. Aun Neow, M. H. Ang, and Jr., "Practical issues in pixel–based autofocusing for machine vision," IEEE International Conference on Robotics and Automation, vol. 3, pp. 2791-2796, 2001.
    [16] J. B. Zimmerman, S. M. Pizer, E. V. Staab, J. R. Perry, W. McCartney, and B. C. Brenton, "An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement," IEEE Transactions on Medical Imaging, vol. 7, no. 4, pp. 304-312, 1988.
    [17] Y. T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization," IEEE Transactions on Consumer Electronics, vol. 43, no. 1, pp. 1-8, 1997.

    [18] K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Dejhan, and A. Somboonkaev, "Contrast enhancement using multipeak histogram equalization with brightness preserving," The 1998 IEEE Asia-Pacific Conference on Circuits and Systems, pp.455-458 ,1998.
    [19] 井上誠喜,八木伸行,林正樹,中須英府輔,三谷公二,奧井誠人,C語言數位影像處理,全華圖書,中華民國95年
    [20] S. C. Hsu, C. H. Liu and N. J. Wang, “Fuzzy PI controller tuning for a linear permanent magnet synchronous motor drive,” The 27th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, pp. 1661-1666, Dec. 2001.
    [21] J. Widjaja and S. Jutamulia, “Wavelet transform-based autofocus camera systems,” Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 49-51, Nov. 1998.
    [22] S. K. Nayar, M. Watanabe and M. Noguchi, “Real-time focus range sensor,” Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 1186-1198, Dec. 1995.
    [23] J. Baina, and J. Dublet, “Automatic focus and iris control for video cameras,” Fifth international conference on image processing and its applications, pp. 232-235, Jul. 1995.
    [24] 鐘國亮,影像處理與電腦視覺,東華書局,2002
    [25] 吳成柯,戴善榮,程湘君,雲立實 譯, 數位影像處理,儒林圖書有限公司,1996

    無法下載圖示 全文公開日期 2014/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE