簡易檢索 / 詳目顯示

研究生: 陳欣儀
Hsin-I Chen
論文名稱: 探討不同應力路徑下台北粘土之不排水勁度劣化行為
Investigations on stiffness degradation behavior by undrained triaxial tests under different stress paths
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
none
楊國鑫
none
鄧福宸
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 劣化行為應力路徑
外文關鍵詞: degradation behavior, stress paths
相關次數: 點閱:118下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據研究指出台北粘土於小應變階段具有高勁度之行為,且其不排水勁度具有劣化行為,即勁度隨著應變增加而減少。因此在程式分析部分需考慮粘土之高初始勁度與劣化行為。由於現今之分析雖有考慮到小應變下之高勁度行為與軸向加壓試驗的劣化行為,但實際工程進行時不同位置之粘土受載方式不同,其分析上更應考慮不同應力路徑下之劣化行為。因此,本研究針對台北重模粘土進行三軸 壓密不排水於不同應力路徑下之解壓再壓試驗,並同時施作彎曲元件試驗。試驗結果顯示對於所選用的土壤,單以應變來看AC與LE其解壓再壓彈性模數與初始彈性模數之比值具有單一的劣化行為,並可迴歸得到單一劣化曲線。但若以應力水平來看,因受破壞應變影響則不同應力路徑之劣化行為會不同。


    Behaviors of high initial Young’s modulus and stiffness degradation were observed on Taipei silty clay, and were applied to the numerical analysis in excavations with advanced soil models. The analysis with consideration of high initial Young’s modulus and stiffness degradation under axial compression condition yields in better prediction results. However, stress paths in a real excavation are different for soil elements at different positions. Thus, the degradation behavior of stiffness for soils under different stress paths should be investigated. This study presented a series of CK0U (K0 consolidation and undrained shearing) unloading-reloading triaxial tests under three stress paths, i.e. AC (axial compression), AE (axial extension), and LC (lateral extension), with bender element tests. Test results demonstrated that both secant Young’s moduli and shear moduli degraded with the increase of strain and stress level. From results of AC and LE tests, stiffness degradation ratios for tested soil versus axial strains are unique (or stress path independent). Nevertheless, the degradation ratio versus the stress level is affected by the failure strain and dependent on stress paths.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 1 第二章 文獻回顧 3 2.1土壤之應力路徑 3 2.2 受剪速率 5 2.3 彎曲元件 6 2.3.1剪力模數之量測 6 2.3.2剪力波到達時間之判定 8 2.4不排水變形模數之影響因素 8 2.5解壓再壓變形模數 10 2.5.1劣化行為 10 2.5.2劣化參數之定義 11 第三章 試驗計畫、設備與試驗方法 23 3.1 試驗計畫 23 3.2 土樣來源與重模試體之製作 23 3.2.1 土樣來源 23 3.2.2製作重模試體 24 3.3自動三軸儀器設備 25 3.3.1軸向加壓系統 26 3.3.2壓力控制系統 26 3.3.3三軸量測裝置 27 3.3.4三軸試驗之配件 28 3.4 試驗內容 28 3.4.1 基本物理性質試驗 28 3.4.2 受剪速率之決定 29 3.4.3 三軸 壓密試驗 30 3.4.4各種應力路徑之不排水試驗 32 第四章 試驗結果 42 4.1 基本物理試驗 42 4.2土壤相關參數之決定 42 4.3三軸 壓密不排水試驗AC試驗 46 4.3.1不排水受剪之結果 46 4.3.2彈性模數 48 4.4三軸 壓密不排水試驗AE試驗 50 4.4.1不排水受剪之結果 50 4.4.2彈性模數 52 4.5三軸 壓密不排水試驗LE試驗 54 4.5.1不排水受剪之結果 54 4.5.2彈性模數 56 4.6彎曲元件試驗 57 4.7試驗結果之綜合討論與分析 58 4.7.1不同應力路徑下劣化行為之比較 58 4.7.2 有效應力路徑之比較 60 第五章 結論與建議 101 5.1結論 101 5.2建議 102 參考文獻 103

    1.Dyvik, R. and Madshus,C., (1985)“Lab Measurement of Using Bender Element.”Proc. Of Conf. Adv. Art of Testing Soil Under Cyclic Conditions, ASCE, New York, pp.186-196.
    2.Finno, R.J. and Chung, C.K., (1992)“Stress-Strain-Strength Responses of Compressible Chicago Glacial Clays.”Journal of Geotechnical Engirneering, ASCE, Vol.118, No.10, pp.1607-1625.
    3.Hsieh, P. G., Kung, T. C., and Ou, C. Y, (2005)“Simulation of stress-strain curve under undrained condition.”Geotechnical Engineering, SEAGS, Vol.36, No.1, pp.91-95.
    4.Hsieh, P.G.and Ou,C.Y., (2011)“Analysis of Nonlinear Stress and Strain in Clay under the Undrained Condition.”Journal of Mechanics, Vol.27, No.2, pp.201-213.
    5.Head,K.H., (1986)“Effective Stress Test.”Manual of Soil Laboratory Testing, Vol.3, John Wiley & Son, New York.
    6.Holtz, R.D. and Kovaces, W.D., (1981)“An Introduction to Geotechnical Engineering.”Prentice-Hall, Inc, Englewood Clifts, N.J.
    7.Ladd,C.C., (1964)“Stress-Strain Modulus of Clay inUndrained Shear.”Journal of The Soil Mechanics and Foundations Division, ASCE, Vol.90, No.SM5, pp.103-132.
    8.Ladd, C.C. and Foot, R., (1974)“New Design Procedure for Stability of Soft Clays.”Journal of Geotechnical Enginnering Division, ASCE, Vol.100, No.GT7, pp.763-786.
    9.Ladd, C.C., (1991)“Stability Evaluation during staged construction.” Journal of the Geotechnical Engineering, ASCE, Vol.177, No.4, pp.540-615.
    10.Lambe, T.W, (1967)“Stress Path Method.”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No.SM6, pp.309-331.
    11.Lambe, T.W. and Whitman,R.V, (1969)“Soil Mechanics.”John Wiley & Son, New York.
    12.Lacasse,S., ﹙1979﹚“Effect of Load Duration on Undrained Behaviour of Clay and Sand.”Literature Survey, NGI Internal Report 40007-1, pp.72.
    13.Nakase, A. and Kamei, T., ﹙1986﹚“Influence of Strain Rate on Undrained Shear Characteristic of K0-Consolidated Cohesive Soils.”Soils and Foundations, Vol.26, No.1, pp.85-95.
    14.Pennington, D.S., Nash, D.F.T., and Lings, M.L., (2001)“Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens.”Geotechnical Testing Journal, Vol.47, No.2, pp.133-144.
    15.Teng, F.C., (2010)“Prediction of ground movement induced by excavation using the numerical method with the consideration of inherent stiffness anisotropy.”Ph.D. Dissertation, National Taiwan University of Science and Technology, Taipei, R.O.C.
    16.Wood, D.M., (1990)“Soil Behavior and Critical State Soil Mechanics.” Cambridge University Press.
    17.高明宏(2001),「台北沉泥質粘土小應變之不排水勁度模數的量測」,國立台灣科技大學營建工程系碩士學位論文。
    18.秦中天與劉泉枝(1997),「台北粉質黏土體積變化與不排水行為」,中國土木水利工程學刊,第九卷,第四期,第665–678頁。
    19.秦中天、劉泉枝與謝旭昇(1990),「非均向壓密及主應力軸旋轉對松山層土壤剪力強度之影響」,中國土木水利工程學刊,第三卷,第一期,第83–88頁。
    20.喬國華(1992),「台北粉土質粘土在不同應力路徑下之力學行為」,國立台灣科技大學營建工程系碩士學位論文。
    21.張聰耀(1996),「台北沉泥質粘土之變形特性研究」,國立台灣科技大學營建工程系碩士學位論文。
    22.龔東慶(2003),「考慮台北沉泥質粘土小應變行為之深開挖地表沉陷分析」,國立台灣科技大學營建工程系博士學位論文。

    QR CODE